Matches in SemOpenAlex for { <https://semopenalex.org/work/W2122950891> ?p ?o ?g. }
- W2122950891 endingPage "177" @default.
- W2122950891 startingPage "177" @default.
- W2122950891 abstract "The inference of biological networks from high-throughput data has received huge attention during the last decade and can be considered an important problem class in systems biology. However, it has been recognized that reliable network inference remains an unsolved problem. Most authors have identified lack of data and deficiencies in the inference algorithms as the main reasons for this situation. We claim that another major difficulty for solving these inference problems is the frequent lack of uniqueness of many of these networks, especially when prior assumptions have not been taken properly into account. Our contributions aid the distinguishability analysis of chemical reaction network (CRN) models with mass action dynamics. The novel methods are based on linear programming (LP), therefore they allow the efficient analysis of CRNs containing several hundred complexes and reactions. Using these new tools and also previously published ones to obtain the network structure of biological systems from the literature, we find that, often, a unique topology cannot be determined, even if the structure of the corresponding mathematical model is assumed to be known and all dynamical variables are measurable. In other words, certain mechanisms may remain undetected (or they are falsely detected) while the inferred model is fully consistent with the measured data. It is also shown that sparsity enforcing approaches for determining 'true' reaction structures are generally not enough without additional prior information. The inference of biological networks can be an extremely challenging problem even in the utopian case of perfect experimental information. Unfortunately, the practical situation is often more complex than that, since the measurements are typically incomplete, noisy and sometimes dynamically not rich enough, introducing further obstacles to the structure/parameter estimation process. In this paper, we show how the structural uniqueness and identifiability of the models can be guaranteed by carefully adding extra constraints, and that these important properties can be checked through appropriate computation methods." @default.
- W2122950891 created "2016-06-24" @default.
- W2122950891 creator A5030090184 @default.
- W2122950891 creator A5048317569 @default.
- W2122950891 creator A5090264675 @default.
- W2122950891 date "2011-01-01" @default.
- W2122950891 modified "2023-09-25" @default.
- W2122950891 title "Inference of complex biological networks: distinguishability issues and optimization-based solutions" @default.
- W2122950891 cites W1509329028 @default.
- W2122950891 cites W1807981783 @default.
- W2122950891 cites W1963522244 @default.
- W2122950891 cites W1968625379 @default.
- W2122950891 cites W1972764318 @default.
- W2122950891 cites W1977458753 @default.
- W2122950891 cites W1996264210 @default.
- W2122950891 cites W2003195392 @default.
- W2122950891 cites W2013336170 @default.
- W2122950891 cites W2014716295 @default.
- W2122950891 cites W2019264851 @default.
- W2122950891 cites W2028773706 @default.
- W2122950891 cites W2029784397 @default.
- W2122950891 cites W2031434350 @default.
- W2122950891 cites W2034108028 @default.
- W2122950891 cites W2034787898 @default.
- W2122950891 cites W2038006683 @default.
- W2122950891 cites W2038153693 @default.
- W2122950891 cites W2041042514 @default.
- W2122950891 cites W2044028647 @default.
- W2122950891 cites W2046079498 @default.
- W2122950891 cites W2047681355 @default.
- W2122950891 cites W2048110904 @default.
- W2122950891 cites W2052611630 @default.
- W2122950891 cites W2054549655 @default.
- W2122950891 cites W2058221907 @default.
- W2122950891 cites W2058899256 @default.
- W2122950891 cites W2059238994 @default.
- W2122950891 cites W2062273745 @default.
- W2122950891 cites W2063056953 @default.
- W2122950891 cites W2069341822 @default.
- W2122950891 cites W2069645361 @default.
- W2122950891 cites W2072667966 @default.
- W2122950891 cites W2074280444 @default.
- W2122950891 cites W2076980884 @default.
- W2122950891 cites W2081440473 @default.
- W2122950891 cites W2083691092 @default.
- W2122950891 cites W2086948547 @default.
- W2122950891 cites W2086988962 @default.
- W2122950891 cites W2091383103 @default.
- W2122950891 cites W2092492826 @default.
- W2122950891 cites W2094399313 @default.
- W2122950891 cites W2094781369 @default.
- W2122950891 cites W2097389802 @default.
- W2122950891 cites W2099970615 @default.
- W2122950891 cites W2103641729 @default.
- W2122950891 cites W2104810358 @default.
- W2122950891 cites W2105046302 @default.
- W2122950891 cites W2108834847 @default.
- W2122950891 cites W2115547583 @default.
- W2122950891 cites W2121775312 @default.
- W2122950891 cites W2127215672 @default.
- W2122950891 cites W2128506325 @default.
- W2122950891 cites W2128572161 @default.
- W2122950891 cites W2129432711 @default.
- W2122950891 cites W2135744958 @default.
- W2122950891 cites W2143076232 @default.
- W2122950891 cites W2143784594 @default.
- W2122950891 cites W2147641419 @default.
- W2122950891 cites W2149325066 @default.
- W2122950891 cites W2154293840 @default.
- W2122950891 cites W2157121418 @default.
- W2122950891 cites W2161922735 @default.
- W2122950891 cites W3103786587 @default.
- W2122950891 cites W4246840991 @default.
- W2122950891 cites W2052013588 @default.
- W2122950891 doi "https://doi.org/10.1186/1752-0509-5-177" @default.
- W2122950891 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3305990" @default.
- W2122950891 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22034917" @default.
- W2122950891 hasPublicationYear "2011" @default.
- W2122950891 type Work @default.
- W2122950891 sameAs 2122950891 @default.
- W2122950891 citedByCount "71" @default.
- W2122950891 countsByYear W21229508912012 @default.
- W2122950891 countsByYear W21229508912013 @default.
- W2122950891 countsByYear W21229508912014 @default.
- W2122950891 countsByYear W21229508912015 @default.
- W2122950891 countsByYear W21229508912016 @default.
- W2122950891 countsByYear W21229508912017 @default.
- W2122950891 countsByYear W21229508912018 @default.
- W2122950891 countsByYear W21229508912019 @default.
- W2122950891 countsByYear W21229508912020 @default.
- W2122950891 countsByYear W21229508912021 @default.
- W2122950891 countsByYear W21229508912022 @default.
- W2122950891 crossrefType "journal-article" @default.
- W2122950891 hasAuthorship W2122950891A5030090184 @default.
- W2122950891 hasAuthorship W2122950891A5048317569 @default.
- W2122950891 hasAuthorship W2122950891A5090264675 @default.
- W2122950891 hasBestOaLocation W21229508911 @default.
- W2122950891 hasConcept C152662350 @default.