Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123152107> ?p ?o ?g. }
- W2123152107 abstract "The problems we study in this thesis arise in computer science, extremal set theory and quantum computing. The first common feature of these problems is that each can be reduced to characterizing the independent sets of maximum size in a suitable graph. A second common feature is that the size of these independent sets meets an eigenvalue bound due to Delsarte and Hoffman. Thirdly, the graphs that arise belong to association schemes that have already been studied in other contexts. Our first problem involves covering arrays on graphs, which arises in computer science. The goal is to find a smallest covering array on a given graph G. It is known that this is equivalent to determining whether G has a homomorphism into a covering array graph, CAG(n, g). Thus our question: Are covering array graphs cores? A covering array graph has as vertex set the partitions of {1, . . . , n} into g cells each of size at least g, with two vertices being adjacent if their meet has size g. We determine that CAG(9, 3) is a core. We also determine some partial results on the family of graphs CAG(g, g). The key to our method is characterizing the independent sets that meet the Delsarte-Hoffman bound—we call these sets ratio-tight. It turns out that CAG(9, 3) sits inside an association scheme, which will be useful but apparently not essential. We then turn our attention to our next problem: the Erdős-Ko-Rado theorem and its q-analogue. We are motivated by a desire to find a unifying proof that will cover both versions. The EKR theorem gives the maximum number of pairwise disjoint k-sets of a fixed v-set, and characterizes the extremal cases. Its q-analogue does the same for k-dimensional subspaces of a fixed v-dimensional space over GF (q). We find that the methods we developed for covering array graphs apply to the EKR theorem. Moreover, unlike most other proofs of EKR, our argument applies equally well to the q-analogue. We provide a proof of the characterization of the extremal cases for the q-analogue when v = 2k; no such proof has appeared before. Again, the graphs we consider sit inside of well-known association schemes; this time the schemes play a more central role. Finally, we deal with the problem in quantum computing. There are tasks that can be performed using quantum entanglement yet apparently are beyond the reach of methods using classical physics only. One particular task can be solved classically if and only if the graph Ω(n) has chromatic number n. The graph Ω(n) has as vertex set the set of all ±1 vectors of length n, with two vertices adjacent if they are orthogonal. We find that n is a trivial upper bound on the chromatic number, and that this bound holds with equality if and only if the Delsarte-Hoffman bound on independent sets does too. We are thus led to characterize the ratio-tight independent sets. We are then able to leverage our result using a recursive argument to show that χ(Ω(n)) > n for all n > 8. It is notable that the reduction to independent sets, the characterization of ratio-tight sets, and the recursive argument all follow from different proofs of the Delsarte-Hoffman bound. Furthermore, Ω(n) also sits inside a well-known association scheme, which again plays a central role in our approach." @default.
- W2123152107 created "2016-06-24" @default.
- W2123152107 creator A5047885948 @default.
- W2123152107 date "2004-01-01" @default.
- W2123152107 modified "2023-09-24" @default.
- W2123152107 title "Independent Sets and Eigenspaces" @default.
- W2123152107 cites W111038805 @default.
- W2123152107 cites W1534739489 @default.
- W2123152107 cites W1572041907 @default.
- W2123152107 cites W1583183878 @default.
- W2123152107 cites W1631356911 @default.
- W2123152107 cites W1832221442 @default.
- W2123152107 cites W1933299656 @default.
- W2123152107 cites W1963615287 @default.
- W2123152107 cites W1974883847 @default.
- W2123152107 cites W1984830736 @default.
- W2123152107 cites W1985627461 @default.
- W2123152107 cites W1987233725 @default.
- W2123152107 cites W2002564287 @default.
- W2123152107 cites W2006901918 @default.
- W2123152107 cites W2009233867 @default.
- W2123152107 cites W2009852526 @default.
- W2123152107 cites W2012908763 @default.
- W2123152107 cites W2019935404 @default.
- W2123152107 cites W2024021998 @default.
- W2123152107 cites W2031983827 @default.
- W2123152107 cites W2044716089 @default.
- W2123152107 cites W2060431595 @default.
- W2123152107 cites W2069619900 @default.
- W2123152107 cites W2078289947 @default.
- W2123152107 cites W2078345446 @default.
- W2123152107 cites W2086290259 @default.
- W2123152107 cites W2088742261 @default.
- W2123152107 cites W2090534913 @default.
- W2123152107 cites W2093718341 @default.
- W2123152107 cites W2114189119 @default.
- W2123152107 cites W2125710943 @default.
- W2123152107 cites W2138033161 @default.
- W2123152107 cites W2268150282 @default.
- W2123152107 cites W247697463 @default.
- W2123152107 cites W2912300924 @default.
- W2123152107 cites W2949862494 @default.
- W2123152107 cites W2952583369 @default.
- W2123152107 cites W2983896310 @default.
- W2123152107 hasPublicationYear "2004" @default.
- W2123152107 type Work @default.
- W2123152107 sameAs 2123152107 @default.
- W2123152107 citedByCount "27" @default.
- W2123152107 countsByYear W21231521072013 @default.
- W2123152107 countsByYear W21231521072014 @default.
- W2123152107 countsByYear W21231521072016 @default.
- W2123152107 countsByYear W21231521072018 @default.
- W2123152107 countsByYear W21231521072019 @default.
- W2123152107 countsByYear W21231521072020 @default.
- W2123152107 countsByYear W21231521072021 @default.
- W2123152107 crossrefType "dissertation" @default.
- W2123152107 hasAuthorship W2123152107A5047885948 @default.
- W2123152107 hasConcept C114614502 @default.
- W2123152107 hasConcept C118615104 @default.
- W2123152107 hasConcept C121332964 @default.
- W2123152107 hasConcept C122818955 @default.
- W2123152107 hasConcept C132525143 @default.
- W2123152107 hasConcept C134306372 @default.
- W2123152107 hasConcept C158693339 @default.
- W2123152107 hasConcept C33923547 @default.
- W2123152107 hasConcept C4042151 @default.
- W2123152107 hasConcept C62520636 @default.
- W2123152107 hasConcept C73361133 @default.
- W2123152107 hasConcept C77553402 @default.
- W2123152107 hasConcept C80899671 @default.
- W2123152107 hasConceptScore W2123152107C114614502 @default.
- W2123152107 hasConceptScore W2123152107C118615104 @default.
- W2123152107 hasConceptScore W2123152107C121332964 @default.
- W2123152107 hasConceptScore W2123152107C122818955 @default.
- W2123152107 hasConceptScore W2123152107C132525143 @default.
- W2123152107 hasConceptScore W2123152107C134306372 @default.
- W2123152107 hasConceptScore W2123152107C158693339 @default.
- W2123152107 hasConceptScore W2123152107C33923547 @default.
- W2123152107 hasConceptScore W2123152107C4042151 @default.
- W2123152107 hasConceptScore W2123152107C62520636 @default.
- W2123152107 hasConceptScore W2123152107C73361133 @default.
- W2123152107 hasConceptScore W2123152107C77553402 @default.
- W2123152107 hasConceptScore W2123152107C80899671 @default.
- W2123152107 hasLocation W21231521071 @default.
- W2123152107 hasOpenAccess W2123152107 @default.
- W2123152107 hasPrimaryLocation W21231521071 @default.
- W2123152107 hasRelatedWork W109405981 @default.
- W2123152107 hasRelatedWork W1602865767 @default.
- W2123152107 hasRelatedWork W1974883847 @default.
- W2123152107 hasRelatedWork W1986323939 @default.
- W2123152107 hasRelatedWork W2002564287 @default.
- W2123152107 hasRelatedWork W2019935404 @default.
- W2123152107 hasRelatedWork W2049433650 @default.
- W2123152107 hasRelatedWork W2052535020 @default.
- W2123152107 hasRelatedWork W2055915542 @default.
- W2123152107 hasRelatedWork W2061471916 @default.
- W2123152107 hasRelatedWork W2078289947 @default.
- W2123152107 hasRelatedWork W2078345446 @default.
- W2123152107 hasRelatedWork W2088742261 @default.
- W2123152107 hasRelatedWork W2099528956 @default.