Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123203003> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2123203003 endingPage "195" @default.
- W2123203003 startingPage "181" @default.
- W2123203003 abstract "For permutations <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding=application/x-tex>x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=w> <mml:semantics> <mml:mi>w</mml:mi> <mml:annotation encoding=application/x-tex>w</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=mu left-parenthesis x comma w right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mu (x,w)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be the coefficient of highest possible degree in the Kazhdan-Lusztig polynomial <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P Subscript x comma w> <mml:semantics> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>P_{x,w}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. It is well-known that the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=mu left-parenthesis x comma w right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mu (x,w)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arise as the edge labels of certain graphs encoding the representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>S_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The 0-1 Conjecture states that the <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=mu left-parenthesis x comma w right-parenthesis element-of StartSet 0 comma 1 EndSet> <mml:semantics> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>,</mml:mo> <mml:mi>w</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo fence=false stretchy=false>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo fence=false stretchy=false>}</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>mu (x,w) in {0,1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We present two counterexamples to this conjecture, the first in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S 16> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>16</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>S_{16}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for which <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=x> <mml:semantics> <mml:mi>x</mml:mi> <mml:annotation encoding=application/x-tex>x</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=w> <mml:semantics> <mml:mi>w</mml:mi> <mml:annotation encoding=application/x-tex>w</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are in the same left cell, and the second in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S 10> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>10</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>S_{10}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The proof of the counterexample in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S 16> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mn>16</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>S_{16}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> relies on computer calculations." @default.
- W2123203003 created "2016-06-24" @default.
- W2123203003 creator A5008837534 @default.
- W2123203003 creator A5082451871 @default.
- W2123203003 date "2003-05-07" @default.
- W2123203003 modified "2023-09-26" @default.
- W2123203003 title "Counterexamples to the 0-1 Conjecture" @default.
- W2123203003 cites W1607284064 @default.
- W2123203003 cites W1986067975 @default.
- W2123203003 cites W2008184069 @default.
- W2123203003 cites W2009190506 @default.
- W2123203003 cites W2024400026 @default.
- W2123203003 cites W2123203003 @default.
- W2123203003 cites W2168316830 @default.
- W2123203003 doi "https://doi.org/10.1090/s1088-4165-03-00178-x" @default.
- W2123203003 hasPublicationYear "2003" @default.
- W2123203003 type Work @default.
- W2123203003 sameAs 2123203003 @default.
- W2123203003 citedByCount "26" @default.
- W2123203003 countsByYear W21232030032012 @default.
- W2123203003 countsByYear W21232030032013 @default.
- W2123203003 countsByYear W21232030032014 @default.
- W2123203003 countsByYear W21232030032018 @default.
- W2123203003 countsByYear W21232030032019 @default.
- W2123203003 countsByYear W21232030032021 @default.
- W2123203003 crossrefType "journal-article" @default.
- W2123203003 hasAuthorship W2123203003A5008837534 @default.
- W2123203003 hasAuthorship W2123203003A5082451871 @default.
- W2123203003 hasBestOaLocation W21232030031 @default.
- W2123203003 hasConcept C11413529 @default.
- W2123203003 hasConcept C154945302 @default.
- W2123203003 hasConcept C2776321320 @default.
- W2123203003 hasConcept C41008148 @default.
- W2123203003 hasConceptScore W2123203003C11413529 @default.
- W2123203003 hasConceptScore W2123203003C154945302 @default.
- W2123203003 hasConceptScore W2123203003C2776321320 @default.
- W2123203003 hasConceptScore W2123203003C41008148 @default.
- W2123203003 hasIssue "8" @default.
- W2123203003 hasLocation W21232030031 @default.
- W2123203003 hasOpenAccess W2123203003 @default.
- W2123203003 hasPrimaryLocation W21232030031 @default.
- W2123203003 hasRelatedWork W151193258 @default.
- W2123203003 hasRelatedWork W1529400504 @default.
- W2123203003 hasRelatedWork W1871911958 @default.
- W2123203003 hasRelatedWork W1892467659 @default.
- W2123203003 hasRelatedWork W2348710178 @default.
- W2123203003 hasRelatedWork W2808586768 @default.
- W2123203003 hasRelatedWork W2998403542 @default.
- W2123203003 hasRelatedWork W3201926073 @default.
- W2123203003 hasRelatedWork W38394648 @default.
- W2123203003 hasRelatedWork W73525116 @default.
- W2123203003 hasVolume "7" @default.
- W2123203003 isParatext "false" @default.
- W2123203003 isRetracted "false" @default.
- W2123203003 magId "2123203003" @default.
- W2123203003 workType "article" @default.