Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123237317> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2123237317 endingPage "605" @default.
- W2123237317 startingPage "603" @default.
- W2123237317 abstract "EpigenomicsVol. 5, No. 6 EditorialEffect of exercise on DNA methylation and metabolism in human adipose tissue and skeletal muscleTina Rönn & Charlotte LingTina Rönn* Author for correspondenceEpigenetics & Diabetes Unit, Lund University Diabetes Centre, Malmö, Sweden. Search for more papers by this authorEmail the corresponding author at tina.ronn@med.lu.s & Charlotte LingEpigenetics & Diabetes Unit, Lund University Diabetes Centre, Malmö, SwedenSearch for more papers by this authorPublished Online:28 Nov 2013https://doi.org/10.2217/epi.13.61AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: adipose tissueDNA methylationenvironmental factorepigeneticsexercise interventionhuman metabolismskeletal muscleFiguresReferencesRelatedDetailsCited ByDietary induction of obesity and insulin resistance is associated with changes in Fgf21 DNA methylation in liver of miceThe Journal of Nutritional Biochemistry, Vol. 100Prenatal exercise reprograms the development of hypertension progress and improves vascular health in SHR offspringVascular Pharmacology, Vol. 139Basics of epigenetics and role of epigenetics in diabetic complicationsJournal of Pharmacy And Bioallied Sciences, Vol. 13, No. 5DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CENTRAL trial16 November 2020 | Genome Medicine, Vol. 12, No. 1Epigenetic modification and therapeutic targets of diabetes mellitus10 September 2020 | Bioscience Reports, Vol. 40, No. 9Molecular Transducers of Physical Activity Consortium (MoTrPAC): Mapping the Dynamic Responses to ExerciseCell, Vol. 181, No. 7The Beige Adipocyte as a Therapy for Metabolic Diseases12 October 2019 | International Journal of Molecular Sciences, Vol. 20, No. 20Epigenetic Modifications Associated with the Pathogenesis of Type 2 Diabetes MellitusEndocrine, Metabolic & Immune Disorders - Drug Targets, Vol. 19, No. 6Resistance Training Modulates the Humoral Inflammatory (but Not the DNA Methylation) Profile of Diabetic Older Adults Using Metformin25 September 2019 | Neuroimmunomodulation, Vol. 26, No. 4Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis5 September 2018 | Frontiers in Physiology, Vol. 9DNA methylation in the pathogenesis of type 2 diabetes in humansMolecular Metabolism, Vol. 14Klinische Bedeutung der Epigenetik9 March 2018Effects of age and sex on epigenetic modification induced by an acute physical exerciseMedicine, Vol. 96, No. 44Genetic Basis for Increased Risk for Vascular Diseases in Diabetes3 August 2017DNA methylation in peripheral tissue of schizophrenia and bipolar disorder: a systematic review25 January 2016 | BMC Genetics, Vol. 17, No. 1Gene methylation parallelisms between peripheral blood cells and oral mucosa samples in relation to overweight28 March 2017 | Journal of Physiology and Biochemistry, Vol. 73, No. 3Subsets of Visceral Adipose Tissue Nuclei with Distinct Levels of 5-Hydroxymethylcytosine12 May 2016 | PLOS ONE, Vol. 11, No. 5Epigenetic Regulatory Effect of Exercise on Glutathione Peroxidase 1 Expression in the Skeletal Muscle of Severely Dyslipidemic Mice24 March 2016 | PLOS ONE, Vol. 11, No. 3Epigenome-wide profiling of DNA methylation in paired samples of adipose tissue and blood18 February 2016 | Epigenetics, Vol. 11, No. 3Epigenetics and Colorectal Neoplasia: the Evidence for Physical Activity and Sedentary Behavior19 September 2015 | Current Colorectal Cancer Reports, Vol. 11, No. 6Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes?Biochemistry and Cell Biology, Vol. 93, No. 5Epigenetic mechanisms in diabetic complications and metabolic memory7 December 2014 | Diabetologia, Vol. 58, No. 3Understanding Interindividual Epigenetic Variations in Obesity and Its ManagementExercise epigenetics and the fetal origins of diseaseThomas EW Chalk & William M Brown28 November 2014 | Epigenomics, Vol. 6, No. 5Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6-month exercise intervention10 March 2014 | Acta Physiologica, Vol. 211, No. 1 Vol. 5, No. 6 Follow us on social media for the latest updates Metrics Downloaded 319 times History Published online 28 November 2013 Published in print December 2013 Information© Future Medicine LtdKeywordsadipose tissueDNA methylationenvironmental factorepigeneticsexercise interventionhuman metabolismskeletal muscleFinancial & competing interests disclosureThe authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.No writing assistance was utilized in the production of this manuscript.References1 Ling C, Groop L. Epigenetics: a molecular link between environmental factors and Type 2 diabetes. Diabetes58,2718–2725 (2009).2 Eckhardt F, Lewin J, Cortese R et al. DNA methylation profiling of human chromosomes 6, 20 and 22. Nat. Genet.38,1378–1385 (2006).3 Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med.37,737–763 (2007).4 Ronn T, Volkov P, Davegardh C et al. A six months exercise intervention influences the genome-wide dna methylation pattern in human adipose tissue. PLoS Genet.9,e1003572 (2013).5 Galmozzi A, Mitro N, Ferrari A et al. Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes62(3),732–742 (2012).6 Hussey SE, McGee SL, Garnham A, Wentworth JM, Jeukendrup AE, Hargreaves M. Exercise training increases adipose tissue GLUT4 expression in patients with Type 2 diabetes. Diabetes Obes. Metab.13,959–962 (2011).7 Yokomori N, Tawata M, Onaya T. DNA demethylation during the differentiation of 3T3-L1 cells affects the expression of the mouse GLUT4 gene. Diabetes48,685–690 (1999).8 Nitert MD, Dayeh T, Volkov P et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with Type 2 diabetes. Diabetes61(12),3322–3332 (2012).9 Taguchi T, Kishikawa H, Motoshima H et al. Involvement of bradykinin in acute exercise-induced increase of glucose uptake and GLUT-4 translocation in skeletal muscle: studies in normal and diabetic humans and rats. Metabolism49,920–930 (2000).10 Yamauchi T, Kamon J, Ito Y et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature423,762–769 (2003).11 Keller P, Vollaard NB, Gustafsson T et al. A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype. J. Appl. Physiol.110,46–59 (2011).12 Smith JA, Kohn TA, Chetty AK, Ojuka EO. CaMK activation during exercise is required for histone hyperacetylation and MEF2A binding at the MEF2 site on the Glut4 gene. Am. J. Physiol. Endocrinol. Metab.295,E698–E704 (2008).13 Barres R, Yan J, Egan B et al. Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab.15,405–411 (2012).14 Zhang FF, Cardarelli R, Carroll J et al. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics6,293–299 (2011).15 El-Osta A, Brasacchio D, Yao D et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J. Exp. Med.205,2409–2417 (2008).16 Chong S, Whitelaw E. Epigenetic germline inheritance. Curr. Opin. Genet. Dev.14,692–696 (2004).17 Dayeh TA, Olsson AH, Volkov P, Almgren P, Ronn T, Ling C. Identification of CpG-SNPs associated with Type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia56(5),1036–1046 (2013).18 Drong AW, Nicholson G, Hedman AK et al. The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS ONE8,e55923 (2013).19 Gibbs JR, van der Brug MP, Hernandez DG et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet.6,e1000952 (2010).20 Ling C, Poulsen P, Simonsson S et al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle. J. Clin. Invest.117,3427–3435 (2007).21 Tomas E, Kelly M, Xiang X et al. Metabolic and hormonal interactions between muscle and adipose tissue. Proc. Nutr. Soc.63,381–385 (2004).PDF download" @default.
- W2123237317 created "2016-06-24" @default.
- W2123237317 creator A5023244588 @default.
- W2123237317 creator A5053881569 @default.
- W2123237317 date "2013-12-01" @default.
- W2123237317 modified "2023-10-06" @default.
- W2123237317 title "Effect of exercise on DNA methylation and metabolism in human adipose tissue and skeletal muscle" @default.
- W2123237317 cites W1997978122 @default.
- W2123237317 cites W2009449992 @default.
- W2123237317 cites W2011467201 @default.
- W2123237317 cites W2017997943 @default.
- W2123237317 cites W2028345214 @default.
- W2123237317 cites W2028423120 @default.
- W2123237317 cites W2047806321 @default.
- W2123237317 cites W2065020285 @default.
- W2123237317 cites W2077976642 @default.
- W2123237317 cites W2100168825 @default.
- W2123237317 cites W2104651942 @default.
- W2123237317 cites W2113728034 @default.
- W2123237317 cites W2120831243 @default.
- W2123237317 cites W2123174009 @default.
- W2123237317 cites W2123212032 @default.
- W2123237317 cites W2124508338 @default.
- W2123237317 cites W2131435383 @default.
- W2123237317 cites W2135792781 @default.
- W2123237317 cites W2144460023 @default.
- W2123237317 cites W2164575981 @default.
- W2123237317 cites W2165038103 @default.
- W2123237317 doi "https://doi.org/10.2217/epi.13.61" @default.
- W2123237317 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24283873" @default.
- W2123237317 hasPublicationYear "2013" @default.
- W2123237317 type Work @default.
- W2123237317 sameAs 2123237317 @default.
- W2123237317 citedByCount "29" @default.
- W2123237317 countsByYear W21232373172014 @default.
- W2123237317 countsByYear W21232373172015 @default.
- W2123237317 countsByYear W21232373172016 @default.
- W2123237317 countsByYear W21232373172017 @default.
- W2123237317 countsByYear W21232373172018 @default.
- W2123237317 countsByYear W21232373172019 @default.
- W2123237317 countsByYear W21232373172020 @default.
- W2123237317 countsByYear W21232373172021 @default.
- W2123237317 countsByYear W21232373172022 @default.
- W2123237317 countsByYear W21232373172023 @default.
- W2123237317 crossrefType "journal-article" @default.
- W2123237317 hasAuthorship W2123237317A5023244588 @default.
- W2123237317 hasAuthorship W2123237317A5053881569 @default.
- W2123237317 hasConcept C104317684 @default.
- W2123237317 hasConcept C126322002 @default.
- W2123237317 hasConcept C134018914 @default.
- W2123237317 hasConcept C150194340 @default.
- W2123237317 hasConcept C171089720 @default.
- W2123237317 hasConcept C190727270 @default.
- W2123237317 hasConcept C2778514504 @default.
- W2123237317 hasConcept C2779959927 @default.
- W2123237317 hasConcept C33288867 @default.
- W2123237317 hasConcept C54355233 @default.
- W2123237317 hasConcept C552990157 @default.
- W2123237317 hasConcept C60644358 @default.
- W2123237317 hasConcept C62231903 @default.
- W2123237317 hasConcept C71924100 @default.
- W2123237317 hasConcept C86803240 @default.
- W2123237317 hasConceptScore W2123237317C104317684 @default.
- W2123237317 hasConceptScore W2123237317C126322002 @default.
- W2123237317 hasConceptScore W2123237317C134018914 @default.
- W2123237317 hasConceptScore W2123237317C150194340 @default.
- W2123237317 hasConceptScore W2123237317C171089720 @default.
- W2123237317 hasConceptScore W2123237317C190727270 @default.
- W2123237317 hasConceptScore W2123237317C2778514504 @default.
- W2123237317 hasConceptScore W2123237317C2779959927 @default.
- W2123237317 hasConceptScore W2123237317C33288867 @default.
- W2123237317 hasConceptScore W2123237317C54355233 @default.
- W2123237317 hasConceptScore W2123237317C552990157 @default.
- W2123237317 hasConceptScore W2123237317C60644358 @default.
- W2123237317 hasConceptScore W2123237317C62231903 @default.
- W2123237317 hasConceptScore W2123237317C71924100 @default.
- W2123237317 hasConceptScore W2123237317C86803240 @default.
- W2123237317 hasIssue "6" @default.
- W2123237317 hasLocation W21232373171 @default.
- W2123237317 hasLocation W21232373172 @default.
- W2123237317 hasOpenAccess W2123237317 @default.
- W2123237317 hasPrimaryLocation W21232373171 @default.
- W2123237317 hasRelatedWork W1998349112 @default.
- W2123237317 hasRelatedWork W2024490794 @default.
- W2123237317 hasRelatedWork W2046964473 @default.
- W2123237317 hasRelatedWork W2052355316 @default.
- W2123237317 hasRelatedWork W2054863651 @default.
- W2123237317 hasRelatedWork W2107880877 @default.
- W2123237317 hasRelatedWork W2128056428 @default.
- W2123237317 hasRelatedWork W2151182744 @default.
- W2123237317 hasRelatedWork W2314477290 @default.
- W2123237317 hasRelatedWork W2902329290 @default.
- W2123237317 hasVolume "5" @default.
- W2123237317 isParatext "false" @default.
- W2123237317 isRetracted "false" @default.
- W2123237317 magId "2123237317" @default.
- W2123237317 workType "article" @default.