Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123238468> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2123238468 endingPage "2194" @default.
- W2123238468 startingPage "2181" @default.
- W2123238468 abstract "Inverse-system approximation using finite-impulse responses (FIR) is essential to a broad area of signal-processing applications. The conventional Wiener filtering techniques based on the least-square approach cannot provide an analytical framework simultaneously governing two crucial problems, namely, the selection of model order and the evaluation of asymptotical error bounds. In fact, the square approximation error induced from the FIR realization of a linear time-invariant system is quite complicated, specifically for those system transfer functions possessing repeated zeros with large multiplicities. Therefore, in this paper, we establish an isomorphism to characterize the <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>z</i> -transform pairs. In this mathematical paradigm, we elaborate the problem of approximating an inverse system or filter with an infinite number of coefficients by an FIR filter and derive the new <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>L</i> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> and <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>L</i> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2</sub> approximation-error bounds between the actual inverse filter and the corresponding approximated FIR. Our new theories, analysis, and bounds can be utilized to quantify the appropriate model order for the inverse-system approximation that is often needed for signal processing, control, communications, etc." @default.
- W2123238468 created "2016-06-24" @default.
- W2123238468 creator A5002859892 @default.
- W2123238468 creator A5019504861 @default.
- W2123238468 creator A5040614086 @default.
- W2123238468 creator A5046638616 @default.
- W2123238468 date "2009-10-01" @default.
- W2123238468 modified "2023-10-11" @default.
- W2123238468 title "Theories, Analysis, and Bounds of the Finite-Support Approximation for the Inverses of Mixing-Phase FIR Systems" @default.
- W2123238468 cites W1982634237 @default.
- W2123238468 cites W1998367189 @default.
- W2123238468 cites W2016855736 @default.
- W2123238468 cites W2106542409 @default.
- W2123238468 cites W2110199756 @default.
- W2123238468 cites W2112690556 @default.
- W2123238468 cites W2114846403 @default.
- W2123238468 cites W2118239006 @default.
- W2123238468 cites W2124775747 @default.
- W2123238468 cites W2128334000 @default.
- W2123238468 cites W2137493839 @default.
- W2123238468 cites W2145078727 @default.
- W2123238468 cites W2146483501 @default.
- W2123238468 cites W2150940198 @default.
- W2123238468 cites W2151275233 @default.
- W2123238468 cites W2156746018 @default.
- W2123238468 cites W2161841660 @default.
- W2123238468 cites W2162602779 @default.
- W2123238468 cites W2169539839 @default.
- W2123238468 cites W2294522120 @default.
- W2123238468 cites W2538287042 @default.
- W2123238468 doi "https://doi.org/10.1109/tcsi.2008.2012204" @default.
- W2123238468 hasPublicationYear "2009" @default.
- W2123238468 type Work @default.
- W2123238468 sameAs 2123238468 @default.
- W2123238468 citedByCount "1" @default.
- W2123238468 countsByYear W21232384682023 @default.
- W2123238468 crossrefType "journal-article" @default.
- W2123238468 hasAuthorship W2123238468A5002859892 @default.
- W2123238468 hasAuthorship W2123238468A5019504861 @default.
- W2123238468 hasAuthorship W2123238468A5040614086 @default.
- W2123238468 hasAuthorship W2123238468A5046638616 @default.
- W2123238468 hasConcept C106131492 @default.
- W2123238468 hasConcept C11413529 @default.
- W2123238468 hasConcept C118615104 @default.
- W2123238468 hasConcept C198386975 @default.
- W2123238468 hasConcept C207467116 @default.
- W2123238468 hasConcept C2524010 @default.
- W2123238468 hasConcept C28826006 @default.
- W2123238468 hasConcept C31972630 @default.
- W2123238468 hasConcept C33923547 @default.
- W2123238468 hasConcept C41008148 @default.
- W2123238468 hasConceptScore W2123238468C106131492 @default.
- W2123238468 hasConceptScore W2123238468C11413529 @default.
- W2123238468 hasConceptScore W2123238468C118615104 @default.
- W2123238468 hasConceptScore W2123238468C198386975 @default.
- W2123238468 hasConceptScore W2123238468C207467116 @default.
- W2123238468 hasConceptScore W2123238468C2524010 @default.
- W2123238468 hasConceptScore W2123238468C28826006 @default.
- W2123238468 hasConceptScore W2123238468C31972630 @default.
- W2123238468 hasConceptScore W2123238468C33923547 @default.
- W2123238468 hasConceptScore W2123238468C41008148 @default.
- W2123238468 hasIssue "10" @default.
- W2123238468 hasLocation W21232384681 @default.
- W2123238468 hasOpenAccess W2123238468 @default.
- W2123238468 hasPrimaryLocation W21232384681 @default.
- W2123238468 hasRelatedWork W2038737370 @default.
- W2123238468 hasRelatedWork W2044386356 @default.
- W2123238468 hasRelatedWork W2162728134 @default.
- W2123238468 hasRelatedWork W2767038330 @default.
- W2123238468 hasRelatedWork W2787816752 @default.
- W2123238468 hasRelatedWork W2899084033 @default.
- W2123238468 hasRelatedWork W2902195311 @default.
- W2123238468 hasRelatedWork W4234799465 @default.
- W2123238468 hasRelatedWork W4253938985 @default.
- W2123238468 hasRelatedWork W73107897 @default.
- W2123238468 hasVolume "56" @default.
- W2123238468 isParatext "false" @default.
- W2123238468 isRetracted "false" @default.
- W2123238468 magId "2123238468" @default.
- W2123238468 workType "article" @default.