Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123446112> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2123446112 abstract "We examine and compare different approaches to p-adic integration and the p-adic Riemann-Hilbert-correspondence. We compare the parallel transport of C. Deninger and A. Werner with the parallel-transport of Y. Andre and V. Berkovich on curves. In a special case we show that these constructions are compatible with G. Faltings' p-adic Simpson-correspondence. For abelian varieties with good ordinary reduction, we examine a construction of C. Deninger and A. Werner and show, that there is an equivalence of categories between the category of temperate representation of the Tate-module and the category of translation invariant vector bundles, that are equipped with canonical p-adic connections. On Tate-elliptic curves we relate G. Faltings' Phi-bounded representations to temperate representations, this generalizes a result of G. Herz. In vorliegender Arbeit werden verschiedene Zugange zur p-adischen Integrationund p-adischen Riemann-Hilbert-Korrespondenz untersucht undmiteinander verglichen. Wir vergleichen dabei den Paralleltransport von C. Deninger und A. Werner mit dem Paralleltransport von Y. Andre und V. Berkovich auf Kurven. In einem Spezialfall zeigen wir auch, dass die Konstruktionen mit G. Faltings' p-adischer Simpson-Korrespondenz vertraglich ist. Fur Abelsche Varietaten mit guter gewohnlicher Reduktion zeigen wir, dass es eine Aquivalenz von Kategorien gibt, zwischen den temperierten Darstellungen des Tate Moduls und translationsinvarianten Vektorbundeln, und dass diese einen kanonischen p-adischen Zusammenhang besitzen. Diese Konstruktion baut auf einer Konstruktion von C. Deninger und A. Werner auf. Fur Tate-elliptische Kurven interpretieren wir G. Faltings' Phi-beschrankte Darstellungen als temperierte Darstellungen, was ein Resultat von G. Herz verallgemeinert." @default.
- W2123446112 created "2016-06-24" @default.
- W2123446112 creator A5026988908 @default.
- W2123446112 date "2008-01-01" @default.
- W2123446112 modified "2023-09-23" @default.
- W2123446112 title "p-adic vector bundles on curves and abelian varieties and representations of the fundamental group" @default.
- W2123446112 cites W1139672906 @default.
- W2123446112 cites W115897878 @default.
- W2123446112 cites W1492614336 @default.
- W2123446112 cites W1505819731 @default.
- W2123446112 cites W1544003996 @default.
- W2123446112 cites W1558046128 @default.
- W2123446112 cites W1597204532 @default.
- W2123446112 cites W1797783360 @default.
- W2123446112 cites W1976679627 @default.
- W2123446112 cites W1988749273 @default.
- W2123446112 cites W1994000491 @default.
- W2123446112 cites W2007779242 @default.
- W2123446112 cites W2023629407 @default.
- W2123446112 cites W2035591380 @default.
- W2123446112 cites W2036313223 @default.
- W2123446112 cites W2052495071 @default.
- W2123446112 cites W2060663265 @default.
- W2123446112 cites W2063433947 @default.
- W2123446112 cites W2070627869 @default.
- W2123446112 cites W2079974764 @default.
- W2123446112 cites W2146553652 @default.
- W2123446112 cites W233109515 @default.
- W2123446112 cites W2488698957 @default.
- W2123446112 cites W3100623241 @default.
- W2123446112 cites W609070726 @default.
- W2123446112 cites W638023214 @default.
- W2123446112 cites W644274252 @default.
- W2123446112 cites W68305314 @default.
- W2123446112 cites W3047960361 @default.
- W2123446112 doi "https://doi.org/10.18419/opus-4838" @default.
- W2123446112 hasPublicationYear "2008" @default.
- W2123446112 type Work @default.
- W2123446112 sameAs 2123446112 @default.
- W2123446112 citedByCount "1" @default.
- W2123446112 crossrefType "journal-article" @default.
- W2123446112 hasAuthorship W2123446112A5026988908 @default.
- W2123446112 hasConcept C136119220 @default.
- W2123446112 hasConcept C136170076 @default.
- W2123446112 hasConcept C138885662 @default.
- W2123446112 hasConcept C15708023 @default.
- W2123446112 hasConcept C159876591 @default.
- W2123446112 hasConcept C202444582 @default.
- W2123446112 hasConcept C33923547 @default.
- W2123446112 hasConcept C95857938 @default.
- W2123446112 hasConceptScore W2123446112C136119220 @default.
- W2123446112 hasConceptScore W2123446112C136170076 @default.
- W2123446112 hasConceptScore W2123446112C138885662 @default.
- W2123446112 hasConceptScore W2123446112C15708023 @default.
- W2123446112 hasConceptScore W2123446112C159876591 @default.
- W2123446112 hasConceptScore W2123446112C202444582 @default.
- W2123446112 hasConceptScore W2123446112C33923547 @default.
- W2123446112 hasConceptScore W2123446112C95857938 @default.
- W2123446112 hasLocation W21234461121 @default.
- W2123446112 hasOpenAccess W2123446112 @default.
- W2123446112 hasPrimaryLocation W21234461121 @default.
- W2123446112 hasRelatedWork W1585244800 @default.
- W2123446112 hasRelatedWork W1693544721 @default.
- W2123446112 hasRelatedWork W1999931039 @default.
- W2123446112 hasRelatedWork W2001930700 @default.
- W2123446112 hasRelatedWork W2058140382 @default.
- W2123446112 hasRelatedWork W2258747691 @default.
- W2123446112 hasRelatedWork W2262264760 @default.
- W2123446112 hasRelatedWork W2266649231 @default.
- W2123446112 hasRelatedWork W2271114506 @default.
- W2123446112 hasRelatedWork W2408277891 @default.
- W2123446112 hasRelatedWork W2598523597 @default.
- W2123446112 hasRelatedWork W2789651051 @default.
- W2123446112 hasRelatedWork W2899583175 @default.
- W2123446112 hasRelatedWork W2900010981 @default.
- W2123446112 hasRelatedWork W2964037182 @default.
- W2123446112 hasRelatedWork W3193476316 @default.
- W2123446112 hasRelatedWork W3194824615 @default.
- W2123446112 hasRelatedWork W584793320 @default.
- W2123446112 hasRelatedWork W604516602 @default.
- W2123446112 hasRelatedWork W611164176 @default.
- W2123446112 isParatext "false" @default.
- W2123446112 isRetracted "false" @default.
- W2123446112 magId "2123446112" @default.
- W2123446112 workType "article" @default.