Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123456818> ?p ?o ?g. }
- W2123456818 endingPage "34" @default.
- W2123456818 startingPage "22" @default.
- W2123456818 abstract "Previous studies from this laboratory have shown that there are striking similarities between the yellow chromophores, fluorophores and modified amino acids released by proteolytic digestion from calf lens proteins ascorbylated in vitro and their counterparts isolated from aged and cataractous lens proteins. The studies reported in this communication were conducted to further investigate whether ascorbic acid-mediated modification of lens proteins could lead to the formation of lens protein aggregates capable of scattering visible light, similar to the high molecular aggregates found in aged human lenses. Ascorbic acid, but not glucose, fructose, ribose or erythrulose, caused the aggregation of calf lens proteins to proteins ranging from 2.2 x 10(6) up to 3.0 x 10(8 )Da. This compared to proteins ranging from 1.8 x 10(6) up to 3.6 x 10(8 )Da for the water-soluble (WS) proteins isolated from aged human lenses. This aggregation was likely due to the glycation of lens crystallins because [U-(14)C] ascorbate was incorporated into the aggregate fraction and because NaCNBH(3), which reduces the initial Schiff base, prevented any protein aggregation. Reactions of ascorbate with purified crystallin fractions showed little or no aggregation of alpha-crystallin, significant aggregation of beta(H)-crystallin, but rapid precipitation of purified beta(L)- and gamma-crystallin. The aggregation of lens proteins can be prevented by the binding of damaged crystallins to alpha-crystallin due to its chaperone activity. Depending upon the ratios between the components of the incubation mixtures, alpha-crystallin prevented the precipitation of the purified beta(L)- and gamma-crystallin fractions during ascorbylation. The addition of at least 20% of alpha-crystallin by weight into glycation mixtures with beta(L)-, or gamma-crystallins completely inhibited protein precipitation, and increased the amount of the high molecular weight aggregates in solution. Static and dynamic light scattering measurements of the supernatants from the ascorbic acid-modified mixtures of alpha- and beta(L)-, or gamma-crystallins showed similar molar masses (up to 10(8 )Da) and hydrodynamic diameter (up to 80( )nm). These data support the hypothesis, that if the lens reducing environment is compromised, the ascorbylation of lens crystallins can significantly change the short range interactions between different classes of crystallins leading to protein aggregation, light scattering and eventually to senile cataract formation." @default.
- W2123456818 created "2016-06-24" @default.
- W2123456818 creator A5006695191 @default.
- W2123456818 creator A5028994001 @default.
- W2123456818 creator A5084254044 @default.
- W2123456818 creator A5087477714 @default.
- W2123456818 date "2008-01-01" @default.
- W2123456818 modified "2023-10-17" @default.
- W2123456818 title "Glycation by ascorbic acid oxidation products leads to the aggregation of lens proteins" @default.
- W2123456818 cites W1481566353 @default.
- W2123456818 cites W1557253076 @default.
- W2123456818 cites W1896619220 @default.
- W2123456818 cites W1963597558 @default.
- W2123456818 cites W1964200421 @default.
- W2123456818 cites W1964649339 @default.
- W2123456818 cites W1967045100 @default.
- W2123456818 cites W1969185047 @default.
- W2123456818 cites W1976462235 @default.
- W2123456818 cites W1979489445 @default.
- W2123456818 cites W1982063629 @default.
- W2123456818 cites W1983367107 @default.
- W2123456818 cites W1984707567 @default.
- W2123456818 cites W1988185075 @default.
- W2123456818 cites W1989949137 @default.
- W2123456818 cites W1991292857 @default.
- W2123456818 cites W1996155054 @default.
- W2123456818 cites W1999853538 @default.
- W2123456818 cites W1999921913 @default.
- W2123456818 cites W2007342308 @default.
- W2123456818 cites W2008463780 @default.
- W2123456818 cites W2010261765 @default.
- W2123456818 cites W2010775881 @default.
- W2123456818 cites W2013304786 @default.
- W2123456818 cites W2015862394 @default.
- W2123456818 cites W2016591133 @default.
- W2123456818 cites W2016678475 @default.
- W2123456818 cites W2016753064 @default.
- W2123456818 cites W2019014760 @default.
- W2123456818 cites W2031908838 @default.
- W2123456818 cites W2032169939 @default.
- W2123456818 cites W2039961720 @default.
- W2123456818 cites W2044411081 @default.
- W2123456818 cites W2044636975 @default.
- W2123456818 cites W2044677498 @default.
- W2123456818 cites W2052460135 @default.
- W2123456818 cites W2053357515 @default.
- W2123456818 cites W2057162977 @default.
- W2123456818 cites W2058345849 @default.
- W2123456818 cites W2065493291 @default.
- W2123456818 cites W2066303560 @default.
- W2123456818 cites W2066766320 @default.
- W2123456818 cites W2070659813 @default.
- W2123456818 cites W2071675359 @default.
- W2123456818 cites W2074863648 @default.
- W2123456818 cites W2079021848 @default.
- W2123456818 cites W2080812610 @default.
- W2123456818 cites W2090205376 @default.
- W2123456818 cites W2100837269 @default.
- W2123456818 cites W2109028819 @default.
- W2123456818 cites W2112318556 @default.
- W2123456818 cites W2113461670 @default.
- W2123456818 cites W2122935743 @default.
- W2123456818 cites W2123781848 @default.
- W2123456818 cites W2125793278 @default.
- W2123456818 cites W2143305417 @default.
- W2123456818 cites W2145101544 @default.
- W2123456818 cites W2157201740 @default.
- W2123456818 cites W2160916653 @default.
- W2123456818 cites W2319852967 @default.
- W2123456818 cites W26093798 @default.
- W2123456818 cites W97623486 @default.
- W2123456818 doi "https://doi.org/10.1016/j.bbadis.2007.10.003" @default.
- W2123456818 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2274899" @default.
- W2123456818 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18023423" @default.
- W2123456818 hasPublicationYear "2008" @default.
- W2123456818 type Work @default.
- W2123456818 sameAs 2123456818 @default.
- W2123456818 citedByCount "89" @default.
- W2123456818 countsByYear W21234568182012 @default.
- W2123456818 countsByYear W21234568182013 @default.
- W2123456818 countsByYear W21234568182014 @default.
- W2123456818 countsByYear W21234568182015 @default.
- W2123456818 countsByYear W21234568182016 @default.
- W2123456818 countsByYear W21234568182017 @default.
- W2123456818 countsByYear W21234568182018 @default.
- W2123456818 countsByYear W21234568182019 @default.
- W2123456818 countsByYear W21234568182020 @default.
- W2123456818 countsByYear W21234568182021 @default.
- W2123456818 countsByYear W21234568182022 @default.
- W2123456818 countsByYear W21234568182023 @default.
- W2123456818 crossrefType "journal-article" @default.
- W2123456818 hasAuthorship W2123456818A5006695191 @default.
- W2123456818 hasAuthorship W2123456818A5028994001 @default.
- W2123456818 hasAuthorship W2123456818A5084254044 @default.
- W2123456818 hasAuthorship W2123456818A5087477714 @default.
- W2123456818 hasBestOaLocation W21234568182 @default.
- W2123456818 hasConcept C136238340 @default.
- W2123456818 hasConcept C147990577 @default.