Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123457453> ?p ?o ?g. }
- W2123457453 endingPage "2195" @default.
- W2123457453 startingPage "2182" @default.
- W2123457453 abstract "The theory of compressed sensing suggests that successful inversion of an image of the physical world (broadly defined to include speech signals, radar/sonar returns, vibration records, sensor array snapshot vectors, 2-D images, and so on) for its source modes and amplitudes can be achieved at measurement dimensions far lower than what might be expected from the classical theories of spectrum or modal analysis, provided that the image is sparse in an apriori known basis. For imaging problems in spectrum analysis, and passive and active radar/sonar, this basis is usually taken to be a DFT basis. However, in reality no physical field is sparse in the DFT basis or in any apriori known basis. No matter how finely we grid the parameter space the sources may not lie in the center of the grid cells and consequently there is mismatch between the assumed and the actual bases for sparsity. In this paper, we study the sensitivity of compressed sensing to mismatch between the assumed and the actual sparsity bases. We start by analyzing the effect of basis mismatch on the best <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> -term approximation error, which is central to providing exact sparse recovery guarantees. We establish achievable bounds for the <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>l</i> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> error of the best <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> -term approximation and show that these bounds grow linearly with the image (or grid) dimension and the mismatch level between the assumed and actual bases for sparsity. We then derive bounds, with similar growth behavior, for the basis pursuit <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>l</i> <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sub> recovery error, indicating that the sparse recovery may suffer large errors in the presence of basis mismatch. Although, we present our results in the context of basis pursuit, our analysis applies to any sparse recovery principle that relies on the accuracy of best <i xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>k</i> -term approximations for its performance guarantees. We particularly highlight the problematic nature of basis mismatch in Fourier imaging, where spillage from off-grid DFT components turns a sparse representation into an incompressible one. We substantiate our mathematical analysis by numerical examples that demonstrate a considerable performance degradation for image inversion from compressed sensing measurements in the presence of basis mismatch, for problem sizes common to radar and sonar." @default.
- W2123457453 created "2016-06-24" @default.
- W2123457453 creator A5016897646 @default.
- W2123457453 creator A5028995727 @default.
- W2123457453 creator A5053809095 @default.
- W2123457453 creator A5080469112 @default.
- W2123457453 date "2011-05-01" @default.
- W2123457453 modified "2023-10-16" @default.
- W2123457453 title "Sensitivity to Basis Mismatch in Compressed Sensing" @default.
- W2123457453 cites W1983749341 @default.
- W2123457453 cites W1988828143 @default.
- W2123457453 cites W1999955334 @default.
- W2123457453 cites W2015418199 @default.
- W2123457453 cites W2026276849 @default.
- W2123457453 cites W2030449718 @default.
- W2123457453 cites W2033332370 @default.
- W2123457453 cites W2050994160 @default.
- W2123457453 cites W2089957712 @default.
- W2123457453 cites W2091256848 @default.
- W2123457453 cites W2095978736 @default.
- W2123457453 cites W2096650463 @default.
- W2123457453 cites W2097816293 @default.
- W2123457453 cites W2104266187 @default.
- W2123457453 cites W2110140246 @default.
- W2123457453 cites W2116148865 @default.
- W2123457453 cites W2119667497 @default.
- W2123457453 cites W2120991191 @default.
- W2123457453 cites W2121194215 @default.
- W2123457453 cites W2128131274 @default.
- W2123457453 cites W2129131372 @default.
- W2123457453 cites W2129638195 @default.
- W2123457453 cites W2134033146 @default.
- W2123457453 cites W2137628444 @default.
- W2123457453 cites W2138857456 @default.
- W2123457453 cites W2140122025 @default.
- W2123457453 cites W2140466267 @default.
- W2123457453 cites W2145096794 @default.
- W2123457453 cites W2154332973 @default.
- W2123457453 cites W2156377127 @default.
- W2123457453 cites W2162654459 @default.
- W2123457453 cites W2170929819 @default.
- W2123457453 cites W2289917018 @default.
- W2123457453 cites W2538726670 @default.
- W2123457453 cites W4246841922 @default.
- W2123457453 cites W4250955649 @default.
- W2123457453 cites W653761051 @default.
- W2123457453 doi "https://doi.org/10.1109/tsp.2011.2112650" @default.
- W2123457453 hasPublicationYear "2011" @default.
- W2123457453 type Work @default.
- W2123457453 sameAs 2123457453 @default.
- W2123457453 citedByCount "777" @default.
- W2123457453 countsByYear W21234574532012 @default.
- W2123457453 countsByYear W21234574532013 @default.
- W2123457453 countsByYear W21234574532014 @default.
- W2123457453 countsByYear W21234574532015 @default.
- W2123457453 countsByYear W21234574532016 @default.
- W2123457453 countsByYear W21234574532017 @default.
- W2123457453 countsByYear W21234574532018 @default.
- W2123457453 countsByYear W21234574532019 @default.
- W2123457453 countsByYear W21234574532020 @default.
- W2123457453 countsByYear W21234574532021 @default.
- W2123457453 countsByYear W21234574532022 @default.
- W2123457453 countsByYear W21234574532023 @default.
- W2123457453 crossrefType "journal-article" @default.
- W2123457453 hasAuthorship W2123457453A5016897646 @default.
- W2123457453 hasAuthorship W2123457453A5028995727 @default.
- W2123457453 hasAuthorship W2123457453A5053809095 @default.
- W2123457453 hasAuthorship W2123457453A5080469112 @default.
- W2123457453 hasConcept C111472728 @default.
- W2123457453 hasConcept C11413529 @default.
- W2123457453 hasConcept C12426560 @default.
- W2123457453 hasConcept C124851039 @default.
- W2123457453 hasConcept C134306372 @default.
- W2123457453 hasConcept C138885662 @default.
- W2123457453 hasConcept C154945302 @default.
- W2123457453 hasConcept C156872377 @default.
- W2123457453 hasConcept C187691185 @default.
- W2123457453 hasConcept C2524010 @default.
- W2123457453 hasConcept C33923547 @default.
- W2123457453 hasConcept C41008148 @default.
- W2123457453 hasConcept C554190296 @default.
- W2123457453 hasConcept C555745239 @default.
- W2123457453 hasConcept C5917680 @default.
- W2123457453 hasConcept C75553542 @default.
- W2123457453 hasConcept C76155785 @default.
- W2123457453 hasConcept C99217422 @default.
- W2123457453 hasConceptScore W2123457453C111472728 @default.
- W2123457453 hasConceptScore W2123457453C11413529 @default.
- W2123457453 hasConceptScore W2123457453C12426560 @default.
- W2123457453 hasConceptScore W2123457453C124851039 @default.
- W2123457453 hasConceptScore W2123457453C134306372 @default.
- W2123457453 hasConceptScore W2123457453C138885662 @default.
- W2123457453 hasConceptScore W2123457453C154945302 @default.
- W2123457453 hasConceptScore W2123457453C156872377 @default.
- W2123457453 hasConceptScore W2123457453C187691185 @default.
- W2123457453 hasConceptScore W2123457453C2524010 @default.
- W2123457453 hasConceptScore W2123457453C33923547 @default.
- W2123457453 hasConceptScore W2123457453C41008148 @default.