Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123506908> ?p ?o ?g. }
- W2123506908 endingPage "629" @default.
- W2123506908 startingPage "617" @default.
- W2123506908 abstract "This paper presents the most up-to-date methods for the task of designing a system to accurately classify abnormal events, or faults, in a complex tribological mechanism, using elemental analysis of lubrication oil as an indicator of engine condition. The discussion combines perspectives from numerous fault diagnosis applications, both online and offline, to focus upon the task of offline event detection and diagnosis of datasets from elemental analysis, and although this does not suffer from complexity issues as in real-time processing, it introduces a number of other problems such as sparsity and selecting an accurate knowledge representation as well as reasoning under uncertainty and ignorance. The role of confounding variables is significant in sparse datasets, and as such this paper demonstrates an alternative perspective on both eliminating to an extent the effect of confounding variables and inferring unseen variables from measured variables. There has been little review work on this subject, and as a result this paper helps to join disparate research from a number of different domains to achieve some unification of alternative perspectives. This paper concludes by providing a case study to identify the methods that can be utilized in combination." @default.
- W2123506908 created "2016-06-24" @default.
- W2123506908 creator A5019952384 @default.
- W2123506908 creator A5085867312 @default.
- W2123506908 date "2011-09-01" @default.
- W2123506908 modified "2023-09-27" @default.
- W2123506908 title "Computational Analysis of Sparse Datasets for Fault Diagnosis in Large Tribological Mechanisms" @default.
- W2123506908 cites W1563088657 @default.
- W2123506908 cites W1606919204 @default.
- W2123506908 cites W1768473493 @default.
- W2123506908 cites W1872534715 @default.
- W2123506908 cites W1966767099 @default.
- W2123506908 cites W1972111963 @default.
- W2123506908 cites W1978700756 @default.
- W2123506908 cites W1990411923 @default.
- W2123506908 cites W1995003166 @default.
- W2123506908 cites W2005086825 @default.
- W2123506908 cites W2010701920 @default.
- W2123506908 cites W2024285038 @default.
- W2123506908 cites W2025881062 @default.
- W2123506908 cites W2041406732 @default.
- W2123506908 cites W2049633694 @default.
- W2123506908 cites W2057863274 @default.
- W2123506908 cites W2064203340 @default.
- W2123506908 cites W2069908238 @default.
- W2123506908 cites W2089050555 @default.
- W2123506908 cites W2090126030 @default.
- W2123506908 cites W2090591592 @default.
- W2123506908 cites W2101866918 @default.
- W2123506908 cites W2103251667 @default.
- W2123506908 cites W2105762019 @default.
- W2123506908 cites W2107156940 @default.
- W2123506908 cites W2114330824 @default.
- W2123506908 cites W2114436241 @default.
- W2123506908 cites W2116296021 @default.
- W2123506908 cites W2120011841 @default.
- W2123506908 cites W2126385963 @default.
- W2123506908 cites W2131871453 @default.
- W2123506908 cites W2136416184 @default.
- W2123506908 cites W2139212933 @default.
- W2123506908 cites W2140369911 @default.
- W2123506908 cites W2143083003 @default.
- W2123506908 cites W2144585611 @default.
- W2123506908 cites W2153154959 @default.
- W2123506908 cites W2165142864 @default.
- W2123506908 cites W2167584269 @default.
- W2123506908 cites W2169143248 @default.
- W2123506908 cites W2177916260 @default.
- W2123506908 cites W300841756 @default.
- W2123506908 cites W4242702158 @default.
- W2123506908 cites W83480120 @default.
- W2123506908 cites W938539187 @default.
- W2123506908 doi "https://doi.org/10.1109/tsmcc.2010.2073703" @default.
- W2123506908 hasPublicationYear "2011" @default.
- W2123506908 type Work @default.
- W2123506908 sameAs 2123506908 @default.
- W2123506908 citedByCount "5" @default.
- W2123506908 countsByYear W21235069082021 @default.
- W2123506908 countsByYear W21235069082022 @default.
- W2123506908 countsByYear W21235069082023 @default.
- W2123506908 crossrefType "journal-article" @default.
- W2123506908 hasAuthorship W2123506908A5019952384 @default.
- W2123506908 hasAuthorship W2123506908A5085867312 @default.
- W2123506908 hasConcept C111472728 @default.
- W2123506908 hasConcept C119857082 @default.
- W2123506908 hasConcept C124101348 @default.
- W2123506908 hasConcept C12713177 @default.
- W2123506908 hasConcept C127313418 @default.
- W2123506908 hasConcept C127413603 @default.
- W2123506908 hasConcept C138885662 @default.
- W2123506908 hasConcept C154945302 @default.
- W2123506908 hasConcept C165205528 @default.
- W2123506908 hasConcept C175551986 @default.
- W2123506908 hasConcept C17744445 @default.
- W2123506908 hasConcept C199360897 @default.
- W2123506908 hasConcept C199539241 @default.
- W2123506908 hasConcept C201995342 @default.
- W2123506908 hasConcept C2522767166 @default.
- W2123506908 hasConcept C2776359362 @default.
- W2123506908 hasConcept C2778732403 @default.
- W2123506908 hasConcept C2780451532 @default.
- W2123506908 hasConcept C41008148 @default.
- W2123506908 hasConcept C94625758 @default.
- W2123506908 hasConcept C96146094 @default.
- W2123506908 hasConceptScore W2123506908C111472728 @default.
- W2123506908 hasConceptScore W2123506908C119857082 @default.
- W2123506908 hasConceptScore W2123506908C124101348 @default.
- W2123506908 hasConceptScore W2123506908C12713177 @default.
- W2123506908 hasConceptScore W2123506908C127313418 @default.
- W2123506908 hasConceptScore W2123506908C127413603 @default.
- W2123506908 hasConceptScore W2123506908C138885662 @default.
- W2123506908 hasConceptScore W2123506908C154945302 @default.
- W2123506908 hasConceptScore W2123506908C165205528 @default.
- W2123506908 hasConceptScore W2123506908C175551986 @default.
- W2123506908 hasConceptScore W2123506908C17744445 @default.
- W2123506908 hasConceptScore W2123506908C199360897 @default.
- W2123506908 hasConceptScore W2123506908C199539241 @default.
- W2123506908 hasConceptScore W2123506908C201995342 @default.