Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123508741> ?p ?o ?g. }
- W2123508741 endingPage "375" @default.
- W2123508741 startingPage "343" @default.
- W2123508741 abstract "In this paper we prove the theorem that there exists no 7-dimensional Lie group manifold G of weak G2 holonomy. We actually prove a stronger statement, namely that there exists no 7-dimensional Lie group with positive definite Ricci tensor RicIJ. This result rules out (supersymmetric and non-supersymmetric) Freund–Rubin solutions of M-theory of the form AdS4×G and compactifications with non-trivial 4-form fluxes of Englert type on an internal group manifold G. A particular class of such backgrounds which, by our arguments are excluded as bulk supergravity compactifications corresponds to the so-called compactifications on twisted tori, for which G has structure constants τKIJ with vanishing trace τJIJ=0. On the other hand our result does not have bearing on warped compactifications of M-theory to four dimensions and/or to compactifications in the presence of localized sources (D-branes, orientifold planes and so forth). Henceforth our result singles out the latter compactifications as the preferred hunting grounds that need to be more systematically explored in relation with all compactification features involving twisted tori." @default.
- W2123508741 created "2016-06-24" @default.
- W2123508741 creator A5001026408 @default.
- W2123508741 creator A5063768007 @default.
- W2123508741 date "2006-09-01" @default.
- W2123508741 modified "2023-10-18" @default.
- W2123508741 title "Twisted tori and fluxes: A no go theorem for Lie groups of weak holonomy" @default.
- W2123508741 cites W1567513956 @default.
- W2123508741 cites W1763832884 @default.
- W2123508741 cites W1965354228 @default.
- W2123508741 cites W1967197430 @default.
- W2123508741 cites W1974978933 @default.
- W2123508741 cites W1980314653 @default.
- W2123508741 cites W1982731184 @default.
- W2123508741 cites W1985660019 @default.
- W2123508741 cites W2001710996 @default.
- W2123508741 cites W2005188844 @default.
- W2123508741 cites W2008769168 @default.
- W2123508741 cites W2009620935 @default.
- W2123508741 cites W2012282185 @default.
- W2123508741 cites W2013969202 @default.
- W2123508741 cites W2017348994 @default.
- W2123508741 cites W2024422064 @default.
- W2123508741 cites W2028510264 @default.
- W2123508741 cites W2031403651 @default.
- W2123508741 cites W2034070412 @default.
- W2123508741 cites W2038489190 @default.
- W2123508741 cites W2039282882 @default.
- W2123508741 cites W2040046350 @default.
- W2123508741 cites W2040863189 @default.
- W2123508741 cites W2046160398 @default.
- W2123508741 cites W2051676073 @default.
- W2123508741 cites W2054007822 @default.
- W2123508741 cites W2057131999 @default.
- W2123508741 cites W2060667737 @default.
- W2123508741 cites W2062312125 @default.
- W2123508741 cites W2065369200 @default.
- W2123508741 cites W2065956995 @default.
- W2123508741 cites W2071877583 @default.
- W2123508741 cites W2075106860 @default.
- W2123508741 cites W2080700154 @default.
- W2123508741 cites W2084577812 @default.
- W2123508741 cites W2086770281 @default.
- W2123508741 cites W2087259311 @default.
- W2123508741 cites W2089976772 @default.
- W2123508741 cites W2090457279 @default.
- W2123508741 cites W2091551791 @default.
- W2123508741 cites W2102380794 @default.
- W2123508741 cites W2104996829 @default.
- W2123508741 cites W2105619230 @default.
- W2123508741 cites W2112118410 @default.
- W2123508741 cites W2114152414 @default.
- W2123508741 cites W2114568312 @default.
- W2123508741 cites W2115282329 @default.
- W2123508741 cites W2122308415 @default.
- W2123508741 cites W2123700835 @default.
- W2123508741 cites W2123963019 @default.
- W2123508741 cites W2125758409 @default.
- W2123508741 cites W2133677666 @default.
- W2123508741 cites W2147061189 @default.
- W2123508741 cites W2148882287 @default.
- W2123508741 cites W2169954904 @default.
- W2123508741 cites W2173328249 @default.
- W2123508741 cites W2614864536 @default.
- W2123508741 cites W3021034198 @default.
- W2123508741 cites W3098773339 @default.
- W2123508741 cites W3099619527 @default.
- W2123508741 cites W3101211857 @default.
- W2123508741 cites W3102765845 @default.
- W2123508741 cites W3104899035 @default.
- W2123508741 cites W3105929362 @default.
- W2123508741 cites W3106071352 @default.
- W2123508741 cites W3126127212 @default.
- W2123508741 cites W4297964503 @default.
- W2123508741 doi "https://doi.org/10.1016/j.nuclphysb.2006.06.006" @default.
- W2123508741 hasPublicationYear "2006" @default.
- W2123508741 type Work @default.
- W2123508741 sameAs 2123508741 @default.
- W2123508741 citedByCount "11" @default.
- W2123508741 countsByYear W21235087412014 @default.
- W2123508741 countsByYear W21235087412016 @default.
- W2123508741 countsByYear W21235087412017 @default.
- W2123508741 countsByYear W21235087412018 @default.
- W2123508741 countsByYear W21235087412020 @default.
- W2123508741 countsByYear W21235087412023 @default.
- W2123508741 crossrefType "journal-article" @default.
- W2123508741 hasAuthorship W2123508741A5001026408 @default.
- W2123508741 hasAuthorship W2123508741A5063768007 @default.
- W2123508741 hasBestOaLocation W21235087412 @default.
- W2123508741 hasConcept C116674579 @default.
- W2123508741 hasConcept C121332964 @default.
- W2123508741 hasConcept C127413603 @default.
- W2123508741 hasConcept C187915474 @default.
- W2123508741 hasConcept C202444582 @default.
- W2123508741 hasConcept C2776552832 @default.
- W2123508741 hasConcept C2779165322 @default.
- W2123508741 hasConcept C2779458738 @default.
- W2123508741 hasConcept C2781311116 @default.