Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123650786> ?p ?o ?g. }
- W2123650786 abstract "We present several necessary and sufficient conditions and a learning algorithm for noise benefits in threshold neural signal detection using error probabilities. The first condition ensures noise benefits in threshold detection of discrete binary signals and applies to noise types from scale families. The condition also gives an easy way to compute optimal noise values for closed-form scale-family noise densities. A related condition ensures noise benefits in threshold detection of signals that have absolutely continuous distributions. This condition reduces to a simple weighted-derivative comparison of the signal densities at the detection threshold when the signal densities are continuously differentiable and when the additive noise is either zero-mean discrete bipolar or finite-variance symmetric scale-family noise. A gradient-ascent learning algorithm can find the optimal noise value for thick-tailed stable densities and many other noise probability densities that do not have a closed form." @default.
- W2123650786 created "2016-06-24" @default.
- W2123650786 creator A5062599957 @default.
- W2123650786 creator A5065383312 @default.
- W2123650786 date "2009-06-01" @default.
- W2123650786 modified "2023-09-25" @default.
- W2123650786 title "Neural signal-detection noise benefits based on error probability" @default.
- W2123650786 cites W1483569328 @default.
- W2123650786 cites W1512980052 @default.
- W2123650786 cites W1540920731 @default.
- W2123650786 cites W1942615418 @default.
- W2123650786 cites W1969782914 @default.
- W2123650786 cites W1982055959 @default.
- W2123650786 cites W1982491809 @default.
- W2123650786 cites W1985033572 @default.
- W2123650786 cites W1988791304 @default.
- W2123650786 cites W1996627900 @default.
- W2123650786 cites W2001860569 @default.
- W2123650786 cites W2002465097 @default.
- W2123650786 cites W2009893904 @default.
- W2123650786 cites W2017326891 @default.
- W2123650786 cites W2020351727 @default.
- W2123650786 cites W2029010014 @default.
- W2123650786 cites W2036373484 @default.
- W2123650786 cites W2066297336 @default.
- W2123650786 cites W2068459627 @default.
- W2123650786 cites W2078707738 @default.
- W2123650786 cites W2080135084 @default.
- W2123650786 cites W2082294575 @default.
- W2123650786 cites W2085905680 @default.
- W2123650786 cites W2088143499 @default.
- W2123650786 cites W2097752919 @default.
- W2123650786 cites W2106760111 @default.
- W2123650786 cites W2111075020 @default.
- W2123650786 cites W2111162236 @default.
- W2123650786 cites W2118178838 @default.
- W2123650786 cites W2124398758 @default.
- W2123650786 cites W2131215403 @default.
- W2123650786 cites W2131651138 @default.
- W2123650786 cites W2136071777 @default.
- W2123650786 cites W2139095346 @default.
- W2123650786 cites W2149618862 @default.
- W2123650786 cites W2153911032 @default.
- W2123650786 cites W2156892329 @default.
- W2123650786 cites W2170401993 @default.
- W2123650786 cites W7355550 @default.
- W2123650786 cites W3022463439 @default.
- W2123650786 doi "https://doi.org/10.1109/ijcnn.2009.5179058" @default.
- W2123650786 hasPublicationYear "2009" @default.
- W2123650786 type Work @default.
- W2123650786 sameAs 2123650786 @default.
- W2123650786 citedByCount "1" @default.
- W2123650786 crossrefType "proceedings-article" @default.
- W2123650786 hasAuthorship W2123650786A5062599957 @default.
- W2123650786 hasAuthorship W2123650786A5065383312 @default.
- W2123650786 hasConcept C112806910 @default.
- W2123650786 hasConcept C11413529 @default.
- W2123650786 hasConcept C115961682 @default.
- W2123650786 hasConcept C133976006 @default.
- W2123650786 hasConcept C137270730 @default.
- W2123650786 hasConcept C154945302 @default.
- W2123650786 hasConcept C163294075 @default.
- W2123650786 hasConcept C182163834 @default.
- W2123650786 hasConcept C187612029 @default.
- W2123650786 hasConcept C194257627 @default.
- W2123650786 hasConcept C199360897 @default.
- W2123650786 hasConcept C200378446 @default.
- W2123650786 hasConcept C207658827 @default.
- W2123650786 hasConcept C2776257435 @default.
- W2123650786 hasConcept C2779843651 @default.
- W2123650786 hasConcept C29265498 @default.
- W2123650786 hasConcept C33923547 @default.
- W2123650786 hasConcept C41008148 @default.
- W2123650786 hasConcept C4199805 @default.
- W2123650786 hasConcept C76155785 @default.
- W2123650786 hasConcept C94915269 @default.
- W2123650786 hasConcept C99498987 @default.
- W2123650786 hasConceptScore W2123650786C112806910 @default.
- W2123650786 hasConceptScore W2123650786C11413529 @default.
- W2123650786 hasConceptScore W2123650786C115961682 @default.
- W2123650786 hasConceptScore W2123650786C133976006 @default.
- W2123650786 hasConceptScore W2123650786C137270730 @default.
- W2123650786 hasConceptScore W2123650786C154945302 @default.
- W2123650786 hasConceptScore W2123650786C163294075 @default.
- W2123650786 hasConceptScore W2123650786C182163834 @default.
- W2123650786 hasConceptScore W2123650786C187612029 @default.
- W2123650786 hasConceptScore W2123650786C194257627 @default.
- W2123650786 hasConceptScore W2123650786C199360897 @default.
- W2123650786 hasConceptScore W2123650786C200378446 @default.
- W2123650786 hasConceptScore W2123650786C207658827 @default.
- W2123650786 hasConceptScore W2123650786C2776257435 @default.
- W2123650786 hasConceptScore W2123650786C2779843651 @default.
- W2123650786 hasConceptScore W2123650786C29265498 @default.
- W2123650786 hasConceptScore W2123650786C33923547 @default.
- W2123650786 hasConceptScore W2123650786C41008148 @default.
- W2123650786 hasConceptScore W2123650786C4199805 @default.
- W2123650786 hasConceptScore W2123650786C76155785 @default.
- W2123650786 hasConceptScore W2123650786C94915269 @default.
- W2123650786 hasConceptScore W2123650786C99498987 @default.
- W2123650786 hasLocation W21236507861 @default.