Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123658772> ?p ?o ?g. }
- W2123658772 abstract "The main purpose of these lecture notes is to provide a concise introduction to Lie groups, Lie algebras, and isometric and adjoint actions, aiming mostly at advanced undergraduate and graduate students. In addition, the connection between such classic theories and the research area of the first author is explored. Namely, generalizations to isoparametric submanifolds, polar actions and singular Riemannian foliations with sections (s.r.f.s.) are mentioned. The first chapters cover basic concepts, giving results on adjoint representation, closed subgroups, bi-invariant metrics, Killing forms and splitting in simple ideals. In the following chapters, proper and isometric actions are recalled together with adjoint action and foliations, mostly concerning the Weyl group, normal slices and Dynkin diagrams. A special focus is given to maximal tori and roots of compact Lie groups, exploring its connection with isoparametric submanifolds and polar actions. Furthermore, in the last chapter, a survey on recent research results on s.r.f.s. is given. In this revised version, more details about fiber bundles, proper and isometric actions are explored, and further exercises and examples were added. It also features new sections with examples of singular Riemannian foliations constructed with surgery and suspension of homomorphisms. This is still a preliminary version and we expect to improve it in the future. We would be grateful for any kind of suggestions." @default.
- W2123658772 created "2016-06-24" @default.
- W2123658772 creator A5057806765 @default.
- W2123658772 creator A5090708913 @default.
- W2123658772 date "2009-01-16" @default.
- W2123658772 modified "2023-09-27" @default.
- W2123658772 title "Introduction to Lie groups, isometric and adjoint actions and some generalizations" @default.
- W2123658772 cites W10198567 @default.
- W2123658772 cites W1487598590 @default.
- W2123658772 cites W1491835430 @default.
- W2123658772 cites W1494511102 @default.
- W2123658772 cites W1509364003 @default.
- W2123658772 cites W1521626780 @default.
- W2123658772 cites W1524224706 @default.
- W2123658772 cites W1525296983 @default.
- W2123658772 cites W1525632907 @default.
- W2123658772 cites W1529664207 @default.
- W2123658772 cites W1551148884 @default.
- W2123658772 cites W1553674561 @default.
- W2123658772 cites W1554149356 @default.
- W2123658772 cites W1567288858 @default.
- W2123658772 cites W1573927207 @default.
- W2123658772 cites W1574566904 @default.
- W2123658772 cites W1577258119 @default.
- W2123658772 cites W157927367 @default.
- W2123658772 cites W1581007542 @default.
- W2123658772 cites W1581267499 @default.
- W2123658772 cites W1582630155 @default.
- W2123658772 cites W1583911619 @default.
- W2123658772 cites W1587069887 @default.
- W2123658772 cites W1590135709 @default.
- W2123658772 cites W1595217145 @default.
- W2123658772 cites W1602163944 @default.
- W2123658772 cites W1604978307 @default.
- W2123658772 cites W1607115400 @default.
- W2123658772 cites W1791810888 @default.
- W2123658772 cites W1947495769 @default.
- W2123658772 cites W1949248870 @default.
- W2123658772 cites W1967308363 @default.
- W2123658772 cites W1975866201 @default.
- W2123658772 cites W1976469870 @default.
- W2123658772 cites W1980884801 @default.
- W2123658772 cites W1983894121 @default.
- W2123658772 cites W1986401741 @default.
- W2123658772 cites W2001710996 @default.
- W2123658772 cites W2001716610 @default.
- W2123658772 cites W2004244653 @default.
- W2123658772 cites W2004402942 @default.
- W2123658772 cites W2017088371 @default.
- W2123658772 cites W2018070337 @default.
- W2123658772 cites W2018750163 @default.
- W2123658772 cites W201972770 @default.
- W2123658772 cites W2020538077 @default.
- W2123658772 cites W2023969170 @default.
- W2123658772 cites W2024581708 @default.
- W2123658772 cites W2025929797 @default.
- W2123658772 cites W2026892575 @default.
- W2123658772 cites W2027178438 @default.
- W2123658772 cites W2029641002 @default.
- W2123658772 cites W2039931453 @default.
- W2123658772 cites W2042036551 @default.
- W2123658772 cites W2042875401 @default.
- W2123658772 cites W2052054827 @default.
- W2123658772 cites W2064251653 @default.
- W2123658772 cites W2064507817 @default.
- W2123658772 cites W2065251882 @default.
- W2123658772 cites W2067684590 @default.
- W2123658772 cites W2073241855 @default.
- W2123658772 cites W2077893121 @default.
- W2123658772 cites W2077969874 @default.
- W2123658772 cites W2079773617 @default.
- W2123658772 cites W2087735055 @default.
- W2123658772 cites W2089465567 @default.
- W2123658772 cites W2091791701 @default.
- W2123658772 cites W2092272609 @default.
- W2123658772 cites W2093622500 @default.
- W2123658772 cites W2108208155 @default.
- W2123658772 cites W2113055611 @default.
- W2123658772 cites W2118601916 @default.
- W2123658772 cites W2123930655 @default.
- W2123658772 cites W2140292005 @default.
- W2123658772 cites W2148260337 @default.
- W2123658772 cites W2159493749 @default.
- W2123658772 cites W2166937807 @default.
- W2123658772 cites W2167248829 @default.
- W2123658772 cites W2202095337 @default.
- W2123658772 cites W2210507183 @default.
- W2123658772 cites W2315850070 @default.
- W2123658772 cites W2320471620 @default.
- W2123658772 cites W2327101409 @default.
- W2123658772 cites W2330712617 @default.
- W2123658772 cites W2338542124 @default.
- W2123658772 cites W2487051289 @default.
- W2123658772 cites W2497289964 @default.
- W2123658772 cites W2576021085 @default.
- W2123658772 cites W2579863161 @default.
- W2123658772 cites W2592190088 @default.
- W2123658772 cites W3014434128 @default.
- W2123658772 cites W3134669559 @default.
- W2123658772 cites W3194657102 @default.