Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123754932> ?p ?o ?g. }
- W2123754932 endingPage "1364" @default.
- W2123754932 startingPage "1355" @default.
- W2123754932 abstract "BackgroundFoxA factors are critical regulators of embryonic development and postembryonic life, but little is know about the upstream pathways that modulate their activity [1Friedman J.R. Kaestner K.H. The Foxa family of transcription factors in development and metabolism.Cell. Mol. Life Sci. 2006; 63: 2317-2328Crossref PubMed Scopus (343) Google Scholar]. C. elegans pha-4 encodes a FoxA transcription factor that is required to establish the foregut in embryos and to control growth and longevity after birth [2Mango, S.E. (2007). The C. elegans pharynx: A model for organogenesis. In WormBook, The C. elegans Research Community, ed. 10.1895/wormbook.1.129.1, http://www.wormbook.org.Google Scholar, 3Panowski S.H. Wolff S. Aguilaniu H. Durieux J. Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans.Nature. 2007; 447: 550-555Crossref PubMed Scopus (391) Google Scholar, 4Ao W. Gaudet J. Kent W.J. Muttumu S. Mango S.E. Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.Science. 2004; 305: 1743-1746Crossref PubMed Scopus (143) Google Scholar, 5Gaudet J. Mango S.E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4.Science. 2002; 295: 821-825Crossref PubMed Scopus (287) Google Scholar]. We previously identified the AAA+ ATPase homolog ruvb-1 as a potent suppressor of pha-4 mutations [6Updike D.L. Mango S.E. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB.Genetics. 2007; 177: 819-833Crossref PubMed Scopus (13) Google Scholar].ResultsHere we show that ruvb-1 is a component of the Target of Rapamycin (TOR) pathway in C. elegans (CeTOR). Both ruvb-1 and let-363/TOR control nucleolar size and promote localization of box C/D snoRNPs to nucleoli, suggesting a role in rRNA maturation. Inactivation of let-363/TOR or ruvb-1 suppresses the lethality associated with reduced pha-4 activity. The CeTOR pathway controls protein homeostasis and also contributes to adult longevity [7Kaeberlein M. Kennedy B.K. Protein translation, 2007.Aging Cell. 2007; 6: 731-734Crossref PubMed Scopus (39) Google Scholar, 8Vellai T. Takacs-Vellai K. Zhang Y. Kovacs A.L. Orosz L. Muller F. Genetics: Influence of TOR kinase on lifespan in C. elegans.Nature. 2003; 426: 620Crossref PubMed Scopus (767) Google Scholar]. We find that pha-4 is required to extend adult lifespan in response to reduced CeTOR signaling. Mutations in the predicted CeTOR target rsks-1/S6 kinase or in ife-2/eIF4E also reduce protein biosynthesis and extend lifespan [9Hansen M. Taubert S. Crawford D. Libina N. Lee S.J. Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.Aging Cell. 2007; 6: 95-110Crossref PubMed Scopus (578) Google Scholar, 10Pan K.Z. Palter J.E. Rogers A.N. Olsen A. Chen D. Lithgow G.J. Kapahi P. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans.Aging Cell. 2007; 6: 111-119Crossref PubMed Scopus (352) Google Scholar, 11Syntichaki P. Troulinaki K. Tavernarakis N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans.Nature. 2007; 445: 922-926Crossref PubMed Scopus (249) Google Scholar], but only rsks-1 mutations require pha-4 for adult longevity. In addition, rsks-1, but not ife-2, can suppress the larval lethality associated with pha-4 loss-of-function mutations.ConclusionsThe data suggest that pha-4 and the CeTOR pathway antagonize one another to regulate postembryonic development and adult longevity. We suggest a model in which nutrients promote TOR and S6 kinase signaling, which represses pha-4/FoxA, leading to a shorter lifespan. A similar regulatory hierarchy may function in other animals to modulate metabolism, longevity, or disease. FoxA factors are critical regulators of embryonic development and postembryonic life, but little is know about the upstream pathways that modulate their activity [1Friedman J.R. Kaestner K.H. The Foxa family of transcription factors in development and metabolism.Cell. Mol. Life Sci. 2006; 63: 2317-2328Crossref PubMed Scopus (343) Google Scholar]. C. elegans pha-4 encodes a FoxA transcription factor that is required to establish the foregut in embryos and to control growth and longevity after birth [2Mango, S.E. (2007). The C. elegans pharynx: A model for organogenesis. In WormBook, The C. elegans Research Community, ed. 10.1895/wormbook.1.129.1, http://www.wormbook.org.Google Scholar, 3Panowski S.H. Wolff S. Aguilaniu H. Durieux J. Dillin A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans.Nature. 2007; 447: 550-555Crossref PubMed Scopus (391) Google Scholar, 4Ao W. Gaudet J. Kent W.J. Muttumu S. Mango S.E. Environmentally induced foregut remodeling by PHA-4/FoxA and DAF-12/NHR.Science. 2004; 305: 1743-1746Crossref PubMed Scopus (143) Google Scholar, 5Gaudet J. Mango S.E. Regulation of organogenesis by the Caenorhabditis elegans FoxA protein PHA-4.Science. 2002; 295: 821-825Crossref PubMed Scopus (287) Google Scholar]. We previously identified the AAA+ ATPase homolog ruvb-1 as a potent suppressor of pha-4 mutations [6Updike D.L. Mango S.E. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB.Genetics. 2007; 177: 819-833Crossref PubMed Scopus (13) Google Scholar]. Here we show that ruvb-1 is a component of the Target of Rapamycin (TOR) pathway in C. elegans (CeTOR). Both ruvb-1 and let-363/TOR control nucleolar size and promote localization of box C/D snoRNPs to nucleoli, suggesting a role in rRNA maturation. Inactivation of let-363/TOR or ruvb-1 suppresses the lethality associated with reduced pha-4 activity. The CeTOR pathway controls protein homeostasis and also contributes to adult longevity [7Kaeberlein M. Kennedy B.K. Protein translation, 2007.Aging Cell. 2007; 6: 731-734Crossref PubMed Scopus (39) Google Scholar, 8Vellai T. Takacs-Vellai K. Zhang Y. Kovacs A.L. Orosz L. Muller F. Genetics: Influence of TOR kinase on lifespan in C. elegans.Nature. 2003; 426: 620Crossref PubMed Scopus (767) Google Scholar]. We find that pha-4 is required to extend adult lifespan in response to reduced CeTOR signaling. Mutations in the predicted CeTOR target rsks-1/S6 kinase or in ife-2/eIF4E also reduce protein biosynthesis and extend lifespan [9Hansen M. Taubert S. Crawford D. Libina N. Lee S.J. Kenyon C. Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.Aging Cell. 2007; 6: 95-110Crossref PubMed Scopus (578) Google Scholar, 10Pan K.Z. Palter J.E. Rogers A.N. Olsen A. Chen D. Lithgow G.J. Kapahi P. Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans.Aging Cell. 2007; 6: 111-119Crossref PubMed Scopus (352) Google Scholar, 11Syntichaki P. Troulinaki K. Tavernarakis N. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans.Nature. 2007; 445: 922-926Crossref PubMed Scopus (249) Google Scholar], but only rsks-1 mutations require pha-4 for adult longevity. In addition, rsks-1, but not ife-2, can suppress the larval lethality associated with pha-4 loss-of-function mutations. The data suggest that pha-4 and the CeTOR pathway antagonize one another to regulate postembryonic development and adult longevity. We suggest a model in which nutrients promote TOR and S6 kinase signaling, which represses pha-4/FoxA, leading to a shorter lifespan. A similar regulatory hierarchy may function in other animals to modulate metabolism, longevity, or disease." @default.
- W2123754932 created "2016-06-24" @default.
- W2123754932 creator A5024524302 @default.
- W2123754932 creator A5082250718 @default.
- W2123754932 creator A5083349129 @default.
- W2123754932 date "2008-09-01" @default.
- W2123754932 modified "2023-10-11" @default.
- W2123754932 title "The Target of Rapamycin Pathway Antagonizes pha-4/FoxA to Control Development and Aging" @default.
- W2123754932 cites W1513767024 @default.
- W2123754932 cites W1797898354 @default.
- W2123754932 cites W1924615382 @default.
- W2123754932 cites W1965414585 @default.
- W2123754932 cites W1973856122 @default.
- W2123754932 cites W1978664503 @default.
- W2123754932 cites W1986478489 @default.
- W2123754932 cites W1991080848 @default.
- W2123754932 cites W1992046617 @default.
- W2123754932 cites W1994305081 @default.
- W2123754932 cites W2002741326 @default.
- W2123754932 cites W2003028861 @default.
- W2123754932 cites W2004607686 @default.
- W2123754932 cites W2004923406 @default.
- W2123754932 cites W2009624062 @default.
- W2123754932 cites W2011859278 @default.
- W2123754932 cites W2012383052 @default.
- W2123754932 cites W2023012828 @default.
- W2123754932 cites W2023256217 @default.
- W2123754932 cites W2026543948 @default.
- W2123754932 cites W2032462953 @default.
- W2123754932 cites W2032502888 @default.
- W2123754932 cites W2038492783 @default.
- W2123754932 cites W2039956849 @default.
- W2123754932 cites W2040805319 @default.
- W2123754932 cites W2043269926 @default.
- W2123754932 cites W2043738446 @default.
- W2123754932 cites W2043829280 @default.
- W2123754932 cites W2045201133 @default.
- W2123754932 cites W2046989794 @default.
- W2123754932 cites W2052722944 @default.
- W2123754932 cites W2060830629 @default.
- W2123754932 cites W2061091970 @default.
- W2123754932 cites W2061756062 @default.
- W2123754932 cites W2062629127 @default.
- W2123754932 cites W2064145462 @default.
- W2123754932 cites W2066727453 @default.
- W2123754932 cites W2067692987 @default.
- W2123754932 cites W2068768873 @default.
- W2123754932 cites W2072042874 @default.
- W2123754932 cites W2073732701 @default.
- W2123754932 cites W2074182576 @default.
- W2123754932 cites W2076591428 @default.
- W2123754932 cites W2078903854 @default.
- W2123754932 cites W2085814300 @default.
- W2123754932 cites W2086691574 @default.
- W2123754932 cites W2092581835 @default.
- W2123754932 cites W2104431515 @default.
- W2123754932 cites W2109059475 @default.
- W2123754932 cites W2110359316 @default.
- W2123754932 cites W2118883481 @default.
- W2123754932 cites W2134138119 @default.
- W2123754932 cites W2136188007 @default.
- W2123754932 cites W2138416557 @default.
- W2123754932 cites W2142305917 @default.
- W2123754932 cites W2144498949 @default.
- W2123754932 cites W2148581106 @default.
- W2123754932 cites W2154069538 @default.
- W2123754932 cites W2169799458 @default.
- W2123754932 cites W2170979056 @default.
- W2123754932 cites W4238773213 @default.
- W2123754932 doi "https://doi.org/10.1016/j.cub.2008.07.097" @default.
- W2123754932 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2615410" @default.
- W2123754932 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18804378" @default.
- W2123754932 hasPublicationYear "2008" @default.
- W2123754932 type Work @default.
- W2123754932 sameAs 2123754932 @default.
- W2123754932 citedByCount "144" @default.
- W2123754932 countsByYear W21237549322012 @default.
- W2123754932 countsByYear W21237549322013 @default.
- W2123754932 countsByYear W21237549322014 @default.
- W2123754932 countsByYear W21237549322015 @default.
- W2123754932 countsByYear W21237549322016 @default.
- W2123754932 countsByYear W21237549322017 @default.
- W2123754932 countsByYear W21237549322018 @default.
- W2123754932 countsByYear W21237549322019 @default.
- W2123754932 countsByYear W21237549322020 @default.
- W2123754932 countsByYear W21237549322021 @default.
- W2123754932 countsByYear W21237549322022 @default.
- W2123754932 countsByYear W21237549322023 @default.
- W2123754932 crossrefType "journal-article" @default.
- W2123754932 hasAuthorship W2123754932A5024524302 @default.
- W2123754932 hasAuthorship W2123754932A5082250718 @default.
- W2123754932 hasAuthorship W2123754932A5083349129 @default.
- W2123754932 hasBestOaLocation W21237549321 @default.
- W2123754932 hasConcept C162324750 @default.
- W2123754932 hasConcept C187736073 @default.
- W2123754932 hasConcept C2775924081 @default.
- W2123754932 hasConcept C54355233 @default.
- W2123754932 hasConcept C78458016 @default.