Matches in SemOpenAlex for { <https://semopenalex.org/work/W2123758047> ?p ?o ?g. }
- W2123758047 abstract "Spatial and temporal variations in the physical, chemical and biological composition of Lake Ōkaro were measured over 16 months. Lake Ōkaro is a small (0.32 km 2 ) hypertrophic, monomictic lake located in the Central Volcanic Zone of the North Island, New Zealand. Vertical profiles of temperature, chlorophyll fluorescence, dissolved oxygen concentration (DO), pH, specific conductance, photosynthetically active radiation (PAR) and nutrient species, including ammonium-nitrogen (NH4-N), nitrite-nitrogen (NO2-N), nitrate-nitrogen (NO3-N) and phosphate-phosphorus (PO4-P), were collected at up to nine stations at weekly to monthly frequencies. High-frequency variability was assessed during two separate 24-hour monitoring periods, coinciding with an Anabaena spiroidesdominated surface bloom, and a Ceratium hirundinella-dominated deep chlorophyll maximum. Additional data for wind direction and velocity, incident solar irradiance and rainfall was sourced from a meteorological weather station and a lake monitoring buoy at Rotorua, 20 km north of the lake. Spatial variability was more pronounced during summer. Observed vertical gradients in chlorophyll fluorescence, DO, specific conductance and nutrient species were closely linked to thermal stability of the water column. There were large variations in chlorophyll fluorescence amongst stations in summer, which related to displacement of the metalimnion and associated changes in chlorophyll fluorescence. Winter mixing was characterised by relative homogeneity of the water column. Nutrient concentrations were elevated at all depths whereas high concentrations had previously been confined to lower depth strata (the hypolimnion). iv Temperature profiles in summer displayed clear vertical gradients with a welldefined metalimnion that increased in depth until winter mixing generated isothermal conditions. Chlorophyll fluorescence profiles were characterised by the formation of a DCM that was recurrent over both summer periods, and was strongly statistically related to the depth of the thermocline for the duration of stratification. Dissolved oxygen, specific conductance and pH were relatively uniform horizontally, though pH was consistently lower at a well-sheltered nearshore station. All variables showed strong variations with depth during the stratified period. Dissolved oxygen was negligible or zero below the thermocline for much of the stratified period while specific conductance was lowest above or at the thermocline. There were also strong vertical gradients in nutrient concentrations in summer, with concentrations below the thermocline often an order of magnitude higher than those above. The representativeness of fluorescence at a central station to a whole-lake scale was assessed using a vertical integrated value and the standard error derived from up to eight other stations. Values at the single station frequently deviated from the mean fluorescence of the wider lake, particularly at the DCM which suggests that extrapolating single-station measurements to a whole lake could provide highly exaggerated values of lake fluorescence. High-frequency sampling during the A. spiroides-dominated surface bloom showed diel temperature variations attributed mostly to solar irradiance. There was high light attenuation from the high phytoplankton biomass and consistently elevated pH and DO. Fluorescence profiles suggested that the phytoplankton population was strongly buoyant and did not undergo diel vertical migration. v High-frequency sampling during a period when there was a dinoflagellatedominated DCM showed two coinciding fluorescence peaks had formed at 6-7 and 7-8 m depth and contained morphologically and physiologically distinct taxa. The 6-7 m DCM was predominantly Ceratium hirundinella, while the 7-8 m DCM was composed of C. hirundinella and unidentified colonial picoplankton. Fluorescence profiles suggested diel vertical migration was not taking place, and strong gradients in light, nutrient availability and the relative biomass of the dominants suggested that the 6-7 and 7-8 m DCM populations potentially differed in their modes of nutrition, light history and susceptibility to grazing. This research illustrates the degree of spatial variability that can exist in a small, monomictic hypertrophic lake at a given time, and highlights some of the potential limitations of using single-site monitoring stations to represent the physical, chemical and biological conditions of a whole lake. This information may be used to critically evaluate the reliability of phytoplankton biomass estimates that have been derived from spatially-limited sampling methods. This study further illustrates the role that thermal stratification plays in creating vertical gradients in a number of biological and chemical variables, and demonstrates that parallels exist with regard to DCM formation in oligotrophic and hypertrophic lakes, relating to the interplay between light, chlorophyll fluorescence and thermal stratification. Evidence is also provided showing that diel-scale variations in phytoplankton biomass can differ markedly between a cyanobacteria-dominated surface bloom and a dinoflagellate-dominated DCM, which further highlights the value of high-frequency sampling when seeking to estimate phytoplankton biomass using in situ methods." @default.
- W2123758047 created "2016-06-24" @default.
- W2123758047 creator A5017095929 @default.
- W2123758047 date "2011-01-01" @default.
- W2123758047 modified "2023-09-24" @default.
- W2123758047 title "Spatial and temporal trends of phytoplankton and physiochemical variables in a hypertrophic, monomictic lake" @default.
- W2123758047 cites W139155704 @default.
- W2123758047 cites W1483072893 @default.
- W2123758047 cites W1494421260 @default.
- W2123758047 cites W1507469040 @default.
- W2123758047 cites W1523479411 @default.
- W2123758047 cites W1524443333 @default.
- W2123758047 cites W1535536219 @default.
- W2123758047 cites W1566705171 @default.
- W2123758047 cites W1583214207 @default.
- W2123758047 cites W1584963632 @default.
- W2123758047 cites W1939095399 @default.
- W2123758047 cites W1940725079 @default.
- W2123758047 cites W1964451367 @default.
- W2123758047 cites W1964666536 @default.
- W2123758047 cites W1969545014 @default.
- W2123758047 cites W1969547422 @default.
- W2123758047 cites W1969550626 @default.
- W2123758047 cites W1969635928 @default.
- W2123758047 cites W1972754041 @default.
- W2123758047 cites W1974408476 @default.
- W2123758047 cites W1975258039 @default.
- W2123758047 cites W1977068978 @default.
- W2123758047 cites W1977345291 @default.
- W2123758047 cites W1978175222 @default.
- W2123758047 cites W1979787931 @default.
- W2123758047 cites W1981039431 @default.
- W2123758047 cites W1981152555 @default.
- W2123758047 cites W1983189946 @default.
- W2123758047 cites W1984601337 @default.
- W2123758047 cites W1985141522 @default.
- W2123758047 cites W1987277884 @default.
- W2123758047 cites W1990365525 @default.
- W2123758047 cites W1991338034 @default.
- W2123758047 cites W1992620549 @default.
- W2123758047 cites W1992982856 @default.
- W2123758047 cites W1993178254 @default.
- W2123758047 cites W1993568023 @default.
- W2123758047 cites W1994042417 @default.
- W2123758047 cites W1995279076 @default.
- W2123758047 cites W1997380997 @default.
- W2123758047 cites W1997428586 @default.
- W2123758047 cites W1997466867 @default.
- W2123758047 cites W1997909504 @default.
- W2123758047 cites W1998114680 @default.
- W2123758047 cites W2000626641 @default.
- W2123758047 cites W2004541991 @default.
- W2123758047 cites W2004817850 @default.
- W2123758047 cites W2005848474 @default.
- W2123758047 cites W2007881441 @default.
- W2123758047 cites W2009655259 @default.
- W2123758047 cites W2011295899 @default.
- W2123758047 cites W2013650401 @default.
- W2123758047 cites W2016843614 @default.
- W2123758047 cites W2017610058 @default.
- W2123758047 cites W2017952781 @default.
- W2123758047 cites W2018400842 @default.
- W2123758047 cites W2018651353 @default.
- W2123758047 cites W2019472742 @default.
- W2123758047 cites W2019503981 @default.
- W2123758047 cites W2020326796 @default.
- W2123758047 cites W2023870335 @default.
- W2123758047 cites W2027344877 @default.
- W2123758047 cites W2030290375 @default.
- W2123758047 cites W2031689034 @default.
- W2123758047 cites W2033300093 @default.
- W2123758047 cites W2035767830 @default.
- W2123758047 cites W2036432618 @default.
- W2123758047 cites W2039317838 @default.
- W2123758047 cites W2040174528 @default.
- W2123758047 cites W2040680092 @default.
- W2123758047 cites W2043410603 @default.
- W2123758047 cites W2043544053 @default.
- W2123758047 cites W2046171791 @default.
- W2123758047 cites W2046368770 @default.
- W2123758047 cites W2050619192 @default.
- W2123758047 cites W2051148773 @default.
- W2123758047 cites W2051570758 @default.
- W2123758047 cites W2052822404 @default.
- W2123758047 cites W2053513290 @default.
- W2123758047 cites W2054350846 @default.
- W2123758047 cites W2056349865 @default.
- W2123758047 cites W2056432788 @default.
- W2123758047 cites W2057926493 @default.
- W2123758047 cites W2059926336 @default.
- W2123758047 cites W2060535767 @default.
- W2123758047 cites W2060781501 @default.
- W2123758047 cites W2061748448 @default.
- W2123758047 cites W2063179447 @default.
- W2123758047 cites W2065448097 @default.
- W2123758047 cites W2065928478 @default.
- W2123758047 cites W2066620798 @default.
- W2123758047 cites W2069687604 @default.
- W2123758047 cites W2072911570 @default.
- W2123758047 cites W2073846249 @default.