Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124015162> ?p ?o ?g. }
- W2124015162 endingPage "611" @default.
- W2124015162 startingPage "601" @default.
- W2124015162 abstract "Computing convex hull is one of the central problems in various applications of computational geometry. In this paper, a convex hull computing neural network (CHCNN) is developed to solve the related problems in the N-dimensional spaces. The algorithm is based on a two-layered neural network, topologically similar to ART, with a newly developed adaptive training strategy called excited learning. The CHCNN provides a parallel online and real-time processing of data which, after training, yields two closely related approximations, one from within and one from outside, of the desired convex hull. It is shown that accuracy of the approximate convex hulls obtained is around O[K/sup -1/(N-1/)], where K is the number of neurons in the output layer of the CHCNN. When K is taken to be sufficiently large, the CHCNN can generate any accurate approximate convex hull. We also show that an upper bound exists such that the CHCNN will yield the precise convex hull when K is larger than or equal to this bound. A series of simulations and applications is provided to demonstrate the feasibility, effectiveness, and high efficiency of the proposed algorithm." @default.
- W2124015162 created "2016-06-24" @default.
- W2124015162 creator A5024880206 @default.
- W2124015162 creator A5075938156 @default.
- W2124015162 creator A5081013188 @default.
- W2124015162 date "1997-05-01" @default.
- W2124015162 modified "2023-09-24" @default.
- W2124015162 title "Neural networks for convex hull computation" @default.
- W2124015162 cites W1481286537 @default.
- W2124015162 cites W1551732655 @default.
- W2124015162 cites W1570328105 @default.
- W2124015162 cites W1576891459 @default.
- W2124015162 cites W1587362683 @default.
- W2124015162 cites W1968634208 @default.
- W2124015162 cites W1973033359 @default.
- W2124015162 cites W1977401236 @default.
- W2124015162 cites W1998115980 @default.
- W2124015162 cites W2000358470 @default.
- W2124015162 cites W2005314985 @default.
- W2124015162 cites W2014732796 @default.
- W2124015162 cites W2022266599 @default.
- W2124015162 cites W2025299767 @default.
- W2124015162 cites W2038184042 @default.
- W2124015162 cites W2041775009 @default.
- W2124015162 cites W2050284373 @default.
- W2124015162 cites W2051626883 @default.
- W2124015162 cites W2061344951 @default.
- W2124015162 cites W2063027901 @default.
- W2124015162 cites W2065907351 @default.
- W2124015162 cites W2071323660 @default.
- W2124015162 cites W2073181581 @default.
- W2124015162 cites W2083751931 @default.
- W2124015162 cites W2085121963 @default.
- W2124015162 cites W2112532555 @default.
- W2124015162 cites W2120621946 @default.
- W2124015162 cites W2124776405 @default.
- W2124015162 cites W2133671888 @default.
- W2124015162 cites W2149517198 @default.
- W2124015162 cites W2911910046 @default.
- W2124015162 cites W3017143921 @default.
- W2124015162 cites W3136083256 @default.
- W2124015162 cites W2113995812 @default.
- W2124015162 cites W2152477898 @default.
- W2124015162 doi "https://doi.org/10.1109/72.572099" @default.
- W2124015162 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18255663" @default.
- W2124015162 hasPublicationYear "1997" @default.
- W2124015162 type Work @default.
- W2124015162 sameAs 2124015162 @default.
- W2124015162 citedByCount "20" @default.
- W2124015162 countsByYear W21240151622015 @default.
- W2124015162 countsByYear W21240151622019 @default.
- W2124015162 countsByYear W21240151622020 @default.
- W2124015162 countsByYear W21240151622022 @default.
- W2124015162 crossrefType "journal-article" @default.
- W2124015162 hasAuthorship W2124015162A5024880206 @default.
- W2124015162 hasAuthorship W2124015162A5075938156 @default.
- W2124015162 hasAuthorship W2124015162A5081013188 @default.
- W2124015162 hasConcept C111110010 @default.
- W2124015162 hasConcept C112680207 @default.
- W2124015162 hasConcept C11413529 @default.
- W2124015162 hasConcept C114614502 @default.
- W2124015162 hasConcept C127413603 @default.
- W2124015162 hasConcept C134306372 @default.
- W2124015162 hasConcept C134912446 @default.
- W2124015162 hasConcept C154945302 @default.
- W2124015162 hasConcept C157972887 @default.
- W2124015162 hasConcept C199104240 @default.
- W2124015162 hasConcept C206194317 @default.
- W2124015162 hasConcept C2524010 @default.
- W2124015162 hasConcept C33923547 @default.
- W2124015162 hasConcept C37423430 @default.
- W2124015162 hasConcept C39132409 @default.
- W2124015162 hasConcept C41008148 @default.
- W2124015162 hasConcept C45374587 @default.
- W2124015162 hasConcept C50644808 @default.
- W2124015162 hasConcept C64051489 @default.
- W2124015162 hasConcept C77553402 @default.
- W2124015162 hasConceptScore W2124015162C111110010 @default.
- W2124015162 hasConceptScore W2124015162C112680207 @default.
- W2124015162 hasConceptScore W2124015162C11413529 @default.
- W2124015162 hasConceptScore W2124015162C114614502 @default.
- W2124015162 hasConceptScore W2124015162C127413603 @default.
- W2124015162 hasConceptScore W2124015162C134306372 @default.
- W2124015162 hasConceptScore W2124015162C134912446 @default.
- W2124015162 hasConceptScore W2124015162C154945302 @default.
- W2124015162 hasConceptScore W2124015162C157972887 @default.
- W2124015162 hasConceptScore W2124015162C199104240 @default.
- W2124015162 hasConceptScore W2124015162C206194317 @default.
- W2124015162 hasConceptScore W2124015162C2524010 @default.
- W2124015162 hasConceptScore W2124015162C33923547 @default.
- W2124015162 hasConceptScore W2124015162C37423430 @default.
- W2124015162 hasConceptScore W2124015162C39132409 @default.
- W2124015162 hasConceptScore W2124015162C41008148 @default.
- W2124015162 hasConceptScore W2124015162C45374587 @default.
- W2124015162 hasConceptScore W2124015162C50644808 @default.
- W2124015162 hasConceptScore W2124015162C64051489 @default.
- W2124015162 hasConceptScore W2124015162C77553402 @default.
- W2124015162 hasIssue "3" @default.