Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124022660> ?p ?o ?g. }
- W2124022660 endingPage "27" @default.
- W2124022660 startingPage "1550018" @default.
- W2124022660 abstract "The accurate prediction of shallow water breaking heights is paramount to better understanding complex nonlinear near shore coastal processes. Over the past 150 years, numerous empirical relationships have been proposed based on scaled laboratory datasets. This study utilizes a newly available field collected full-scale dataset of breaking wave conditions to investigate the accuracy of published empirical models and a novel artificial neural networks (ANN) model in predicting the final breaking wave-height for laboratory-scaled and full-scaled ocean waves. Performance is measured by comparison against both the field datasets and 465 separate datasets from 11 independent laboratory studies. The relationship of Rattanapitikon and Shibayama [2000 “Verification and modification of breaker height formulas,” Coastal Eng. J. 42 (4), 389–406.] outperformed all available empirical models when tested against only laboratory datasets, but was superseded by the relationship of Robertson et al. [2015 “Remote sensing of irregular breaking wave parameters in field conditions,” J. Coastal Res. 31 (2), 348–363.] when tested against only field datasets. However, this study noted that models developed based on scaled laboratory tests tend to underestimate the ocean full-scale breaking wave-heights. The training and testing of the ANN model were accomplished using 75% and 25% of the combined field and laborartory datasets. The ANN models consistently outperformed predictive accuracy of empirical models. Sensitivity analysis of the trained ANN models quantified the relative impact of individual wave parameters on the final breaking wave-height." @default.
- W2124022660 created "2016-06-24" @default.
- W2124022660 creator A5013280761 @default.
- W2124022660 creator A5014982354 @default.
- W2124022660 creator A5031245594 @default.
- W2124022660 date "2015-12-01" @default.
- W2124022660 modified "2023-09-23" @default.
- W2124022660 title "Prediction of Incipient Breaking Wave-Heights Using Artificial Neural Networks and Empirical Relationships" @default.
- W2124022660 cites W1509486062 @default.
- W2124022660 cites W181771764 @default.
- W2124022660 cites W1964323131 @default.
- W2124022660 cites W1975934790 @default.
- W2124022660 cites W1984093282 @default.
- W2124022660 cites W1989651155 @default.
- W2124022660 cites W1990796053 @default.
- W2124022660 cites W1993263440 @default.
- W2124022660 cites W1994205836 @default.
- W2124022660 cites W1995631682 @default.
- W2124022660 cites W1999940827 @default.
- W2124022660 cites W2001273064 @default.
- W2124022660 cites W2002403857 @default.
- W2124022660 cites W2016522164 @default.
- W2124022660 cites W2029124226 @default.
- W2124022660 cites W2036006690 @default.
- W2124022660 cites W2038511356 @default.
- W2124022660 cites W2039178646 @default.
- W2124022660 cites W2040598692 @default.
- W2124022660 cites W2045017715 @default.
- W2124022660 cites W2048966086 @default.
- W2124022660 cites W2056706887 @default.
- W2124022660 cites W2062793371 @default.
- W2124022660 cites W2064520371 @default.
- W2124022660 cites W2081816434 @default.
- W2124022660 cites W2082067161 @default.
- W2124022660 cites W2082352675 @default.
- W2124022660 cites W2082761466 @default.
- W2124022660 cites W2092942363 @default.
- W2124022660 cites W2095239580 @default.
- W2124022660 cites W2101706954 @default.
- W2124022660 cites W2148181181 @default.
- W2124022660 cites W2148738129 @default.
- W2124022660 cites W2151483290 @default.
- W2124022660 cites W2155890427 @default.
- W2124022660 cites W2165228453 @default.
- W2124022660 cites W2169046426 @default.
- W2124022660 cites W2172212599 @default.
- W2124022660 cites W2490282668 @default.
- W2124022660 cites W2801002997 @default.
- W2124022660 cites W3017323153 @default.
- W2124022660 cites W4210875794 @default.
- W2124022660 cites W4232470858 @default.
- W2124022660 doi "https://doi.org/10.1142/s0578563415500187" @default.
- W2124022660 hasPublicationYear "2015" @default.
- W2124022660 type Work @default.
- W2124022660 sameAs 2124022660 @default.
- W2124022660 citedByCount "21" @default.
- W2124022660 countsByYear W21240226602016 @default.
- W2124022660 countsByYear W21240226602017 @default.
- W2124022660 countsByYear W21240226602018 @default.
- W2124022660 countsByYear W21240226602019 @default.
- W2124022660 countsByYear W21240226602020 @default.
- W2124022660 countsByYear W21240226602021 @default.
- W2124022660 countsByYear W21240226602022 @default.
- W2124022660 countsByYear W21240226602023 @default.
- W2124022660 crossrefType "journal-article" @default.
- W2124022660 hasAuthorship W2124022660A5013280761 @default.
- W2124022660 hasAuthorship W2124022660A5014982354 @default.
- W2124022660 hasAuthorship W2124022660A5031245594 @default.
- W2124022660 hasConcept C111368507 @default.
- W2124022660 hasConcept C119857082 @default.
- W2124022660 hasConcept C121332964 @default.
- W2124022660 hasConcept C127313418 @default.
- W2124022660 hasConcept C133199616 @default.
- W2124022660 hasConcept C154945302 @default.
- W2124022660 hasConcept C165082838 @default.
- W2124022660 hasConcept C169596890 @default.
- W2124022660 hasConcept C202444582 @default.
- W2124022660 hasConcept C205649164 @default.
- W2124022660 hasConcept C2778755073 @default.
- W2124022660 hasConcept C33923547 @default.
- W2124022660 hasConcept C41008148 @default.
- W2124022660 hasConcept C44154836 @default.
- W2124022660 hasConcept C44886760 @default.
- W2124022660 hasConcept C45804977 @default.
- W2124022660 hasConcept C50644808 @default.
- W2124022660 hasConcept C58640448 @default.
- W2124022660 hasConcept C62520636 @default.
- W2124022660 hasConcept C70620910 @default.
- W2124022660 hasConcept C85910571 @default.
- W2124022660 hasConcept C9652623 @default.
- W2124022660 hasConceptScore W2124022660C111368507 @default.
- W2124022660 hasConceptScore W2124022660C119857082 @default.
- W2124022660 hasConceptScore W2124022660C121332964 @default.
- W2124022660 hasConceptScore W2124022660C127313418 @default.
- W2124022660 hasConceptScore W2124022660C133199616 @default.
- W2124022660 hasConceptScore W2124022660C154945302 @default.
- W2124022660 hasConceptScore W2124022660C165082838 @default.
- W2124022660 hasConceptScore W2124022660C169596890 @default.