Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124097534> ?p ?o ?g. }
- W2124097534 endingPage "7787" @default.
- W2124097534 startingPage "7776" @default.
- W2124097534 abstract "This work presents a study on the applicability of radial base function (RBF) neural networks for prediction of Roughness Average (Ra) in the turning process of SAE 52100 hardened steel, with the use of Taguchi’s orthogonal arrays as a tool to design parameters of the network. Experiments were conducted with training sets of different sizes to make possible to compare the performance of the best network obtained from each experiment. The following design factors were considered: (i) number of radial units, (ii) algorithm for selection of radial centers and (iii) algorithm for selection of the spread factor of the radial function. Artificial neural networks (ANN) models obtained proved capable to predict surface roughness in accurate, precise and affordable way. Results pointed significant factors for network design have significant influence on network performance for the task proposed. The work concludes that the design of experiments (DOE) methodology constitutes a better approach to the design of RBF networks for roughness prediction than the most common trial and error approach." @default.
- W2124097534 created "2016-06-24" @default.
- W2124097534 creator A5004862081 @default.
- W2124097534 creator A5017630451 @default.
- W2124097534 creator A5027971195 @default.
- W2124097534 creator A5059503937 @default.
- W2124097534 creator A5087522441 @default.
- W2124097534 date "2012-07-01" @default.
- W2124097534 modified "2023-10-18" @default.
- W2124097534 title "Optimization of Radial Basis Function neural network employed for prediction of surface roughness in hard turning process using Taguchi’s orthogonal arrays" @default.
- W2124097534 cites W1967640926 @default.
- W2124097534 cites W1978618432 @default.
- W2124097534 cites W1983853165 @default.
- W2124097534 cites W1984215981 @default.
- W2124097534 cites W1987344939 @default.
- W2124097534 cites W1989303417 @default.
- W2124097534 cites W1992991167 @default.
- W2124097534 cites W1997128020 @default.
- W2124097534 cites W1999314995 @default.
- W2124097534 cites W1999531737 @default.
- W2124097534 cites W2001209375 @default.
- W2124097534 cites W2002515622 @default.
- W2124097534 cites W2002959977 @default.
- W2124097534 cites W2009103738 @default.
- W2124097534 cites W2009575470 @default.
- W2124097534 cites W2021823076 @default.
- W2124097534 cites W2032082108 @default.
- W2124097534 cites W2033045262 @default.
- W2124097534 cites W2038606746 @default.
- W2124097534 cites W2043629449 @default.
- W2124097534 cites W2046422035 @default.
- W2124097534 cites W2052876121 @default.
- W2124097534 cites W2079537749 @default.
- W2124097534 cites W2080525614 @default.
- W2124097534 cites W2080879384 @default.
- W2124097534 cites W2088347837 @default.
- W2124097534 cites W2092229437 @default.
- W2124097534 cites W2110889188 @default.
- W2124097534 cites W2121753122 @default.
- W2124097534 cites W2125133690 @default.
- W2124097534 cites W2136459762 @default.
- W2124097534 cites W2154526890 @default.
- W2124097534 cites W2162807413 @default.
- W2124097534 cites W3014772551 @default.
- W2124097534 doi "https://doi.org/10.1016/j.eswa.2012.01.058" @default.
- W2124097534 hasPublicationYear "2012" @default.
- W2124097534 type Work @default.
- W2124097534 sameAs 2124097534 @default.
- W2124097534 citedByCount "86" @default.
- W2124097534 countsByYear W21240975342012 @default.
- W2124097534 countsByYear W21240975342013 @default.
- W2124097534 countsByYear W21240975342014 @default.
- W2124097534 countsByYear W21240975342015 @default.
- W2124097534 countsByYear W21240975342016 @default.
- W2124097534 countsByYear W21240975342017 @default.
- W2124097534 countsByYear W21240975342018 @default.
- W2124097534 countsByYear W21240975342019 @default.
- W2124097534 countsByYear W21240975342020 @default.
- W2124097534 countsByYear W21240975342021 @default.
- W2124097534 countsByYear W21240975342022 @default.
- W2124097534 countsByYear W21240975342023 @default.
- W2124097534 crossrefType "journal-article" @default.
- W2124097534 hasAuthorship W2124097534A5004862081 @default.
- W2124097534 hasAuthorship W2124097534A5017630451 @default.
- W2124097534 hasAuthorship W2124097534A5027971195 @default.
- W2124097534 hasAuthorship W2124097534A5059503937 @default.
- W2124097534 hasAuthorship W2124097534A5087522441 @default.
- W2124097534 hasConcept C105795698 @default.
- W2124097534 hasConcept C107365816 @default.
- W2124097534 hasConcept C111919701 @default.
- W2124097534 hasConcept C11413529 @default.
- W2124097534 hasConcept C119857082 @default.
- W2124097534 hasConcept C127413603 @default.
- W2124097534 hasConcept C132917294 @default.
- W2124097534 hasConcept C14036430 @default.
- W2124097534 hasConcept C154945302 @default.
- W2124097534 hasConcept C159985019 @default.
- W2124097534 hasConcept C192562407 @default.
- W2124097534 hasConcept C33923547 @default.
- W2124097534 hasConcept C34559072 @default.
- W2124097534 hasConcept C41008148 @default.
- W2124097534 hasConcept C42632107 @default.
- W2124097534 hasConcept C50644808 @default.
- W2124097534 hasConcept C71039073 @default.
- W2124097534 hasConcept C78458016 @default.
- W2124097534 hasConcept C78519656 @default.
- W2124097534 hasConcept C81917197 @default.
- W2124097534 hasConcept C83469408 @default.
- W2124097534 hasConcept C86803240 @default.
- W2124097534 hasConcept C98045186 @default.
- W2124097534 hasConcept C98856871 @default.
- W2124097534 hasConceptScore W2124097534C105795698 @default.
- W2124097534 hasConceptScore W2124097534C107365816 @default.
- W2124097534 hasConceptScore W2124097534C111919701 @default.
- W2124097534 hasConceptScore W2124097534C11413529 @default.
- W2124097534 hasConceptScore W2124097534C119857082 @default.
- W2124097534 hasConceptScore W2124097534C127413603 @default.
- W2124097534 hasConceptScore W2124097534C132917294 @default.