Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124194910> ?p ?o ?g. }
- W2124194910 endingPage "6307" @default.
- W2124194910 startingPage "6279" @default.
- W2124194910 abstract "Abstract. Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and play a significant role in the global cycles of carbon, nitrogen and water. The purpose of this study is to use field-based and satellite remote-sensing-based methods to assess leaf nitrogen pools in five diverse European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, the Netherlands and Italy. REGFLEC (REGularized canopy reFLECtance) is an advanced image-based inverse canopy radiative transfer modelling system which has shown proficiency for regional mapping of leaf area index (LAI) and leaf chlorophyll (CHLl) using remote sensing data. In this study, high spatial resolution (10–20 m) remote sensing images acquired from the multispectral sensors aboard the SPOT (Satellite For Observation of Earth) satellites were used to assess the capability of REGFLEC for mapping spatial variations in LAI, CHLland the relation to leaf nitrogen (Nl) data in five diverse European agricultural landscapes. REGFLEC is based on physical laws and includes an automatic model parameterization scheme which makes the tool independent of field data for model calibration. In this study, REGFLEC performance was evaluated using LAI measurements and non-destructive measurements (using a SPAD meter) of leaf-scale CHLl and Nl concentrations in 93 fields representing crop- and grasslands of the five landscapes. Furthermore, empirical relationships between field measurements (LAI, CHLl and Nl and five spectral vegetation indices (the Normalized Difference Vegetation Index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green chlorophyll index) were used to assess field data coherence and to serve as a comparison basis for assessing REGFLEC model performance. The field measurements showed strong vertical CHLl gradient profiles in 26% of fields which affected REGFLEC performance as well as the relationships between spectral vegetation indices (SVIs) and field measurements. When the range of surface types increased, the REGFLEC results were in better agreement with field data than the empirical SVI regression models. Selecting only homogeneous canopies with uniform CHLl distributions as reference data for evaluation, REGFLEC was able to explain 69% of LAI observations (rmse = 0.76), 46% of measured canopy chlorophyll contents (rmse = 719 mg m−2) and 51% of measured canopy nitrogen contents (rmse = 2.7 g m−2). Better results were obtained for individual landscapes, except for Italy, where REGFLEC performed poorly due to a lack of dense vegetation canopies at the time of satellite recording. Presence of vegetation is needed to parameterize the REGFLEC model. Combining REGFLEC- and SVI-based model results to minimize errors for a snap-shot assessment of total leaf nitrogen pools in the five landscapes, results varied from 0.6 to 4.0 t km−2. Differences in leaf nitrogen pools between landscapes are attributed to seasonal variations, extents of agricultural area, species variations, and spatial variations in nutrient availability. In order to facilitate a substantial assessment of variations in Nl pools and their relation to landscape based nitrogen and carbon cycling processes, time series of satellite data are needed. The upcoming Sentinel-2 satellite mission will provide new multiple narrowband data opportunities at high spatio-temporal resolution which are expected to further improve remote sensing capabilities for mapping LAI, CHLl and Nl." @default.
- W2124194910 created "2016-06-24" @default.
- W2124194910 creator A5012845214 @default.
- W2124194910 creator A5017622362 @default.
- W2124194910 creator A5020406449 @default.
- W2124194910 creator A5023689856 @default.
- W2124194910 creator A5024899017 @default.
- W2124194910 creator A5025869529 @default.
- W2124194910 creator A5061091066 @default.
- W2124194910 creator A5061242864 @default.
- W2124194910 creator A5070671308 @default.
- W2124194910 creator A5073852737 @default.
- W2124194910 creator A5078414809 @default.
- W2124194910 creator A5079650877 @default.
- W2124194910 creator A5082484358 @default.
- W2124194910 creator A5082789132 @default.
- W2124194910 creator A5083898540 @default.
- W2124194910 date "2013-10-07" @default.
- W2124194910 modified "2023-10-14" @default.
- W2124194910 title "Remote sensing of LAI, chlorophyll and leaf nitrogen pools of crop- and grasslands in five European landscapes" @default.
- W2124194910 cites W116253160 @default.
- W2124194910 cites W1575138596 @default.
- W2124194910 cites W1670110277 @default.
- W2124194910 cites W1964217023 @default.
- W2124194910 cites W1967395374 @default.
- W2124194910 cites W1971621861 @default.
- W2124194910 cites W1974180061 @default.
- W2124194910 cites W1987139340 @default.
- W2124194910 cites W1988233512 @default.
- W2124194910 cites W1988392308 @default.
- W2124194910 cites W1988942299 @default.
- W2124194910 cites W1991651418 @default.
- W2124194910 cites W1994736655 @default.
- W2124194910 cites W1998527532 @default.
- W2124194910 cites W2000485836 @default.
- W2124194910 cites W2000613913 @default.
- W2124194910 cites W2009542758 @default.
- W2124194910 cites W2014897524 @default.
- W2124194910 cites W2014955600 @default.
- W2124194910 cites W2016892196 @default.
- W2124194910 cites W2024925469 @default.
- W2124194910 cites W2028667441 @default.
- W2124194910 cites W2032469401 @default.
- W2124194910 cites W2036003376 @default.
- W2124194910 cites W2038111987 @default.
- W2124194910 cites W2041967624 @default.
- W2124194910 cites W2042315169 @default.
- W2124194910 cites W2043673805 @default.
- W2124194910 cites W2046857879 @default.
- W2124194910 cites W2052169152 @default.
- W2124194910 cites W2056352756 @default.
- W2124194910 cites W2058214432 @default.
- W2124194910 cites W2059501000 @default.
- W2124194910 cites W2065545939 @default.
- W2124194910 cites W2066612219 @default.
- W2124194910 cites W2069049007 @default.
- W2124194910 cites W2072518837 @default.
- W2124194910 cites W2074212361 @default.
- W2124194910 cites W2079397831 @default.
- W2124194910 cites W2081734510 @default.
- W2124194910 cites W2084298899 @default.
- W2124194910 cites W2089464686 @default.
- W2124194910 cites W2094547585 @default.
- W2124194910 cites W2094677081 @default.
- W2124194910 cites W2097696574 @default.
- W2124194910 cites W2098247895 @default.
- W2124194910 cites W2099083482 @default.
- W2124194910 cites W2101108516 @default.
- W2124194910 cites W2103775154 @default.
- W2124194910 cites W2109006150 @default.
- W2124194910 cites W2109378554 @default.
- W2124194910 cites W2112991760 @default.
- W2124194910 cites W2113410727 @default.
- W2124194910 cites W2114535331 @default.
- W2124194910 cites W2115436074 @default.
- W2124194910 cites W2116563724 @default.
- W2124194910 cites W2125397877 @default.
- W2124194910 cites W2125491431 @default.
- W2124194910 cites W2126298076 @default.
- W2124194910 cites W2129090471 @default.
- W2124194910 cites W2131938456 @default.
- W2124194910 cites W2132010266 @default.
- W2124194910 cites W2135322785 @default.
- W2124194910 cites W2139272881 @default.
- W2124194910 cites W2149633660 @default.
- W2124194910 cites W2155138877 @default.
- W2124194910 cites W2156142545 @default.
- W2124194910 cites W2160068471 @default.
- W2124194910 cites W2161815745 @default.
- W2124194910 cites W2164791872 @default.
- W2124194910 cites W2166312616 @default.
- W2124194910 cites W2168872978 @default.
- W2124194910 cites W2312682095 @default.
- W2124194910 cites W48001229 @default.
- W2124194910 doi "https://doi.org/10.5194/bg-10-6279-2013" @default.
- W2124194910 hasPublicationYear "2013" @default.
- W2124194910 type Work @default.
- W2124194910 sameAs 2124194910 @default.