Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124200526> ?p ?o ?g. }
- W2124200526 abstract "[1] The 1-D and single layer combination-based energy balance Penman-Monteith (PM) model has limitations in practical application due to the lack of canopy resistance (rc) data for different vegetation surfaces. rc could be estimated by inversion of the PM model if the actual evapotranspiration (ETa) rate is known, but this approach has its own set of issues. Instead, an empirical method of estimating rc is suggested in this study. We investigated the relationships between primary micrometeorological parameters and rc and developed seven models to estimate rc for a nonstressed maize canopy on an hourly time step using a generalized-linear modeling approach. The most complex rc model uses net radiation (Rn), air temperature (Ta), vapor pressure deficit (VPD), relative humidity (RH), wind speed at 3 m (u3), aerodynamic resistance (ra), leaf area index (LAI), and solar zenith angle (Θ). The simplest model requires Rn, Ta, and RH. We present the practical implementation of all models via experimental validation using scaled up rc data obtained from the dynamic diffusion porometer-measured leaf stomatal resistance through an extensive field campaign in 2006. For further validation, we estimated ETa by solving the PM model using the modeled rc from all seven models and compared the PM ETa estimates with the Bowen ratio energy balance system (BREBS)-measured ETa for an independent data set in 2005. The relationships between hourly rc versus Ta, RH, VPD, Rn, incoming shortwave radiation (Rs), u3, wind direction, LAI, Θ, and ra were presented and discussed. We demonstrated the negative impact of exclusion of LAI when modeling rc, whereas exclusion of ra and Θ did not impact the performance of the rc models. Compared to the calibration results, the validation root mean square difference between observed and modeled rc increased by 5 s m−1 for all rc models developed, ranging from 9.9 s m−1 for the most complex model to 22.8 s m−1 for the simplest model, as compared with the observed rc. The validation r2 values were close to 0.70 for all models, and the modeling efficiency ranged from 0.61 for the most complex model to −1.09 for the simplest model. There was a strong agreement between the BREBS-measured and the PM-estimated ETa using modeled rc. These findings can aid in the selection of a suitable model based on the availability and quality of the input data to predict rc for one-step application of the PM model to estimate ETa for a nonstressed maize canopy." @default.
- W2124200526 created "2016-06-24" @default.
- W2124200526 creator A5017000454 @default.
- W2124200526 creator A5074296013 @default.
- W2124200526 date "2010-08-01" @default.
- W2124200526 modified "2023-10-06" @default.
- W2124200526 title "On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables" @default.
- W2124200526 cites W1209269186 @default.
- W2124200526 cites W1963980315 @default.
- W2124200526 cites W1964655373 @default.
- W2124200526 cites W1964934524 @default.
- W2124200526 cites W1967670740 @default.
- W2124200526 cites W1969974566 @default.
- W2124200526 cites W1982568075 @default.
- W2124200526 cites W1987448188 @default.
- W2124200526 cites W1994471187 @default.
- W2124200526 cites W1995800479 @default.
- W2124200526 cites W2003506090 @default.
- W2124200526 cites W2006720932 @default.
- W2124200526 cites W2010036012 @default.
- W2124200526 cites W2013086683 @default.
- W2124200526 cites W2016961712 @default.
- W2124200526 cites W2018910654 @default.
- W2124200526 cites W2024750460 @default.
- W2124200526 cites W2028833815 @default.
- W2124200526 cites W2029074727 @default.
- W2124200526 cites W2030043359 @default.
- W2124200526 cites W2038617984 @default.
- W2124200526 cites W2043433046 @default.
- W2124200526 cites W2046276307 @default.
- W2124200526 cites W2047975250 @default.
- W2124200526 cites W2051439571 @default.
- W2124200526 cites W2059259678 @default.
- W2124200526 cites W2067155654 @default.
- W2124200526 cites W2069182941 @default.
- W2124200526 cites W2074320242 @default.
- W2124200526 cites W2076682698 @default.
- W2124200526 cites W2080643345 @default.
- W2124200526 cites W2082289141 @default.
- W2124200526 cites W2090508053 @default.
- W2124200526 cites W2097693422 @default.
- W2124200526 cites W2101836973 @default.
- W2124200526 cites W2105366068 @default.
- W2124200526 cites W2108858499 @default.
- W2124200526 cites W2110835121 @default.
- W2124200526 cites W2112393064 @default.
- W2124200526 cites W2112926110 @default.
- W2124200526 cites W2114902929 @default.
- W2124200526 cites W2121983269 @default.
- W2124200526 cites W2123923325 @default.
- W2124200526 cites W2129832806 @default.
- W2124200526 cites W2132237213 @default.
- W2124200526 cites W2135329911 @default.
- W2124200526 cites W2137068929 @default.
- W2124200526 cites W2147540709 @default.
- W2124200526 cites W2147698879 @default.
- W2124200526 cites W2153427373 @default.
- W2124200526 cites W2158569120 @default.
- W2124200526 cites W2158683657 @default.
- W2124200526 cites W2159221478 @default.
- W2124200526 cites W2164330309 @default.
- W2124200526 cites W2166840124 @default.
- W2124200526 cites W2169252045 @default.
- W2124200526 cites W2172202055 @default.
- W2124200526 cites W2322239214 @default.
- W2124200526 cites W2324913510 @default.
- W2124200526 cites W2332370930 @default.
- W2124200526 cites W2333332197 @default.
- W2124200526 cites W4299847412 @default.
- W2124200526 cites W4301861531 @default.
- W2124200526 doi "https://doi.org/10.1029/2009wr008484" @default.
- W2124200526 hasPublicationYear "2010" @default.
- W2124200526 type Work @default.
- W2124200526 sameAs 2124200526 @default.
- W2124200526 citedByCount "64" @default.
- W2124200526 countsByYear W21242005262012 @default.
- W2124200526 countsByYear W21242005262013 @default.
- W2124200526 countsByYear W21242005262014 @default.
- W2124200526 countsByYear W21242005262015 @default.
- W2124200526 countsByYear W21242005262016 @default.
- W2124200526 countsByYear W21242005262017 @default.
- W2124200526 countsByYear W21242005262018 @default.
- W2124200526 countsByYear W21242005262019 @default.
- W2124200526 countsByYear W21242005262020 @default.
- W2124200526 countsByYear W21242005262021 @default.
- W2124200526 countsByYear W21242005262022 @default.
- W2124200526 countsByYear W21242005262023 @default.
- W2124200526 crossrefType "journal-article" @default.
- W2124200526 hasAuthorship W2124200526A5017000454 @default.
- W2124200526 hasAuthorship W2124200526A5074296013 @default.
- W2124200526 hasBestOaLocation W21242005261 @default.
- W2124200526 hasConcept C101000010 @default.
- W2124200526 hasConcept C112889943 @default.
- W2124200526 hasConcept C121332964 @default.
- W2124200526 hasConcept C14331020 @default.
- W2124200526 hasConcept C147534773 @default.
- W2124200526 hasConcept C153294291 @default.
- W2124200526 hasConcept C153385146 @default.
- W2124200526 hasConcept C157517311 @default.
- W2124200526 hasConcept C158960510 @default.