Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124258497> ?p ?o ?g. }
- W2124258497 endingPage "26377" @default.
- W2124258497 startingPage "26369" @default.
- W2124258497 abstract "Oligonucleotides have been extensively studied as antisense or antigene agents that can potentially modulate the expression of specific genes. These strategies rely on sequence-specific hybridization of the oligonucleotide to mRNA or genomic DNA. Recently, it has become clear that oligonucleotides often have biological activities that cannot be attributed to their sequence-specific interactions with nucleic acids. Here we describe a series of guanosine-rich phosphodiester oligodeoxynucleotides that strongly inhibit proliferation in a number of human tumor cell lines. The presence of G-quartets in the active oligonucleotides is demonstrated using an UV melting technique. We show that G-rich oligonucleotides bind to a specific cellular protein and that the biological activity of the oligonucleotides correlates with binding to this protein. The G-rich oligonucleotide-binding protein was detected in both nuclear and cytoplasmic extracts and in proteins derived from the plasma membrane of cells. We present strong evidence that this protein is nucleolin, a multifunctional phosphoprotein whose levels are related to the rate of cell proliferation. Our results indicate that binding of G-rich oligonucleotides to nucleolin may be responsible for their non-sequence-specific effects. Furthermore, these oligonucleotides represent a new class of potentially therapeutic agents with a novel mechanism of action. Oligonucleotides have been extensively studied as antisense or antigene agents that can potentially modulate the expression of specific genes. These strategies rely on sequence-specific hybridization of the oligonucleotide to mRNA or genomic DNA. Recently, it has become clear that oligonucleotides often have biological activities that cannot be attributed to their sequence-specific interactions with nucleic acids. Here we describe a series of guanosine-rich phosphodiester oligodeoxynucleotides that strongly inhibit proliferation in a number of human tumor cell lines. The presence of G-quartets in the active oligonucleotides is demonstrated using an UV melting technique. We show that G-rich oligonucleotides bind to a specific cellular protein and that the biological activity of the oligonucleotides correlates with binding to this protein. The G-rich oligonucleotide-binding protein was detected in both nuclear and cytoplasmic extracts and in proteins derived from the plasma membrane of cells. We present strong evidence that this protein is nucleolin, a multifunctional phosphoprotein whose levels are related to the rate of cell proliferation. Our results indicate that binding of G-rich oligonucleotides to nucleolin may be responsible for their non-sequence-specific effects. Furthermore, these oligonucleotides represent a new class of potentially therapeutic agents with a novel mechanism of action. phosphate-buffered saline electrophoretic mobility shift assay guanosine-rich oligonucleotide 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide nonfat dried milk polyvinylidene difluoride C-rich oligonucleotide Oligonucleotides have the potential to recognize unique sequences of DNA or RNA with a remarkable degree of specificity. For this reason they have been considered as promising candidates to realize gene-specific therapies for the treatment of malignant, viral, and inflammatory diseases. Two major strategies of oligonucleotide-mediated therapeutic intervention have been developed, namely the antisense and antigene approaches. The antisense strategy aims to down-regulate expression of a specific gene by hybridization of the oligonucleotide to the specific mRNA, resulting in inhibition of translation (1Gewirtz A.M. Sokol D.L. Ratajczak M.Z. Blood. 1998; 92: 712-736Crossref PubMed Google Scholar, 2Crooke S.T. Antisense Nucleic Acid Drug Dev. 1998; 8: 115-122Crossref PubMed Scopus (129) Google Scholar, 3Branch A.D. Trends Biochem. Sci. 1998; 23: 45-50Abstract Full Text PDF PubMed Scopus (167) Google Scholar, 4Agrawal S. Zhao Q. Antisense Nucleic Acid Drug Dev. 1998; 8: 135-139Crossref PubMed Scopus (84) Google Scholar). The antigene strategy proposes to inhibit transcription of a target gene by means of triple helix formation between the oligonucleotide and specific sequences in the double-stranded genomic DNA (5Helene C. Giovannangeli C. Guieysse-Peugeot A.L. Praseuth D. CIBA Found. Symp. 1997; 209: 94-102PubMed Google Scholar). Clinical trials based on the antisense approach are now showing that oligonucleotides can be administered in a clinically relevant way and have few toxic side effects (1Gewirtz A.M. Sokol D.L. Ratajczak M.Z. Blood. 1998; 92: 712-736Crossref PubMed Google Scholar, 4Agrawal S. Zhao Q. Antisense Nucleic Acid Drug Dev. 1998; 8: 135-139Crossref PubMed Scopus (84) Google Scholar).Whereas both the antisense and antigene strategies have met with some success, it has become clear in recent years that the interactions of oligonucleotides with the components of a living organism go far beyond sequence-specific hybridization with the target nucleic acid. Recent studies and reexamination of early antisense data have suggested that some of the observed biological effects of antisense oligonucleotides cannot be due entirely to Watson-Crick hybridization with the target mRNA. In some cases, the expected biological effect (e.g. inhibition of cell growth or apoptosis) was achieved, but this was not accompanied by a down-regulation of the target protein and was thus unlikely to be a true antisense effect (6White J.R. Gordon-Smith E.C. Rutherford T.R. Biochem. Biophys. Res. Commun. 1996; 227: 118-124Crossref PubMed Scopus (9) Google Scholar, 7Dryden S. Pickavance L. Tidd D. Williams G. J. Endocrinol. 1998; 157: 169-175Crossref PubMed Scopus (20) Google Scholar). In many cases, it was demonstrated that other non-sequence-specific oligonucleotides could exert biological effects that equaled or exceeded the antisense sequence (8Barton C.M. Lemoine N.R. Br. J. Cancer. 1995; 71: 429-437Crossref PubMed Scopus (50) Google Scholar, 9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar, 10Benimetskaya L. Berton M. Kolbanovsky A. Benimetsky S. Stein C.A. Nucleic Acids Res. 1997; 25: 2648-2656Crossref PubMed Scopus (60) Google Scholar). Although there is currently a high awareness among antisense investigators of the importance of appropriate control oligonucleotides, and the necessity of demonstrating inhibition of target protein production (11Stein C.A. Antisense Nucleic Acid Drug Dev. 1998; 8: 129-132Crossref PubMed Scopus (56) Google Scholar), the mechanism of non-antisense effects is poorly understood.In particular, phosphodiester and phosphorothioate oligodeoxynucleotides containing contiguous guanosines (G) have been repeatedly found to have non-antisense effects on the growth of cells in culture (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar, 10Benimetskaya L. Berton M. Kolbanovsky A. Benimetsky S. Stein C.A. Nucleic Acids Res. 1997; 25: 2648-2656Crossref PubMed Scopus (60) Google Scholar, 12Saijo Y. Uchiyama B. Abe T. Satoh K. Nukiwa T. Jpn. J. Cancer Res. 1997; 88: 26-33Crossref PubMed Scopus (24) Google Scholar). There is evidence that this activity is related to the ability of these oligonucleotides to form stable structures involving intramolecular or intermolecular G-quartets (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar, 10Benimetskaya L. Berton M. Kolbanovsky A. Benimetsky S. Stein C.A. Nucleic Acids Res. 1997; 25: 2648-2656Crossref PubMed Scopus (60) Google Scholar). These are square planar arrangements of four hydrogen-bonded guanines that are stabilized by monovalent cations. Such structures are thought to play an important role in vivo, and putative quartet-forming sequences have been identified in telomeric DNA (13Sundquist W.I. Klug A. Nature. 1989; 342: 825-829Crossref PubMed Scopus (788) Google Scholar), immunoglobulin switch region sequences (14Sen D. Gilbert W. Nature. 1988; 334: 364-366Crossref PubMed Scopus (1445) Google Scholar), human immunodeficiency virus, type I, RNA (15Sundquist W.I. Heaphy S. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 3393-3397Crossref PubMed Scopus (223) Google Scholar), the fragile X repeat sequences (16Fry M. Loeb L.A. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4950-4954Crossref PubMed Scopus (311) Google Scholar), and the retinoblastoma gene (17Murchie A.I. Lilley D.M. Nucleic Acids Res. 1992; 20: 49-53Crossref PubMed Scopus (110) Google Scholar).It has been suggested that non-antisense effects may be due to sequestration of intracellular or surface proteins by the oligonucleotide (18Gold L. Polisky B. Uhlenbeck O. Yarus M. Annu. Rev. Biochem. 1995; 64: 763-797Crossref PubMed Scopus (739) Google Scholar, 19Stein C.A. CIBA Found. Symp. 1997; 209: 79-89PubMed Google Scholar). For G-rich oligonucleotides that can form folded or G-quartet-containing structures, this binding is not mediated by recognition of the primary sequence of the oligonucleotides but rather of their unique three-dimensional shape. However, the protein targets of these oligonucleotides have not been well characterized.Here we identify a G-rich oligonucleotide-binding protein, and we show that the ability of G-rich oligonucleotides to bind to this protein is correlated with their propensity to form G-quartets, and with their ability to inhibit the growth of tumor cells.DISCUSSIONOligonucleotides are polyanionic species that are internalized in cells, probably by receptor-mediated endocytosis (37Vlassov V.V. Balakireva L.A. Yabukov L.A. Biochim. Biophys. Acta. 1994; 1197: 95-108Crossref PubMed Scopus (96) Google Scholar). They are likely to interact with many biomolecules within the cell and also in the extracellular membrane by virtue of both their charge and their shape, as well as sequence-specific interactions with nucleic acids. The proteins that bind to oligonucleotides and mediate non-antisense effects have not yet been unequivocally identified.We have described G-rich oligonucleotides that have potent growth inhibitory effects that are unrelated to any expected antisense or antigene activity. Although we have not yet delineated the mechanism of these effects, we have demonstrated that the antiproliferative effects of these oligonucleotides are related to their ability to bind to a specific cellular protein. Because the GRO-binding protein is also recognized by anti-nucleolin antibodies, we conclude that this protein is either nucleolin itself or a protein of a similar size that shares immunogenic similarities with nucleolin.Nucleolin is an abundant multifunctional 110-kDa phosphoprotein, thought to be located predominantly in the nucleolus of proliferating cells (for reviews, see Refs. 38Tuteja R. Tuteja N. Crit. Rev. Mol. Biol. 1998; 33: 407-436Crossref PubMed Scopus (151) Google Scholar and 39Ginisty H. Sicard H. Roger B. Bouvet P. J. Cell Sci. 1999; 112: 761-772Crossref PubMed Google Scholar). It has been implicated in many aspects of ribosome biogenesis including the control of rDNA transcription, pre-ribosome packaging, and organization of nucleolar chromatin (38Tuteja R. Tuteja N. Crit. Rev. Mol. Biol. 1998; 33: 407-436Crossref PubMed Scopus (151) Google Scholar, 39Ginisty H. Sicard H. Roger B. Bouvet P. J. Cell Sci. 1999; 112: 761-772Crossref PubMed Google Scholar, 40Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar). Another emerging role for nucleolin is as a shuttle protein that transports viral and cellular proteins between the cytoplasm and nucleus/nucleolus of the cell (41Kibbey M.C. Johnson B. Petryshyn R. Jucker M. Kleinman H.K. J. Neurosci. Res. 1995; 42: 314-322Crossref PubMed Scopus (60) Google Scholar, 42Lee C.H. Chang S.C. Chen C.J. Chang M.F. J. Biol. Chem. 1998; 273: 7650-7656Abstract Full Text Full Text PDF PubMed Scopus (73) Google Scholar, 43Waggoner S. Sarnow P. J. Virol. 1998; 72: 6699-6709Crossref PubMed Google Scholar). Nucleolin is also implicated, directly or indirectly, in other roles including nuclear matrix structure (44Gotzmann J. Eger A. Meissner M. Grimm R. Gerner C. Sauermann G. Foisner R. Electrophoresis. 1997; 18: 2645-2653Crossref PubMed Scopus (27) Google Scholar), cytokinesis, and nuclear division (45Léger-Silvestre I. Gulli M.P. Noaillac-Depeyre J. Faubladier M. Sicard H. Caizergues-Ferrer M. Gas N. Chromosoma. 1997; 105: 542-552Crossref PubMed Scopus (21) Google Scholar) and as an RNA and DNA helicase (46Tuteja N. Huang N.W. Skopac D. Tuteja R. Hrvatic S. Zhang J. Pongor S. Joseph G. Faucher C. Almaric F. Falasci A. Gene (Amst.). 1995; 160: 143-148Crossref PubMed Scopus (87) Google Scholar). Its multifunctional nature is reflected in its multidomain structure, consisting of a histone-like N terminus, a central domain containing RNA recognition motifs, and a glycine- and arginine-rich C terminus (47Lapeyre B. Bourbon H. Amalric F. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 1472-1476Crossref PubMed Scopus (312) Google Scholar). Levels of nucleolin are known to relate to the rate of cellular proliferation (48Derenzini M. Sirri V. Trere D. Ochs R.L. Lab. Invest. 1995; 73: 497-502PubMed Google Scholar, 49Roussel P. Hernandez-Verdun D. Exp. Cell Res. 1994; 214: 465-472Crossref PubMed Scopus (166) Google Scholar), being elevated in rapidly proliferating cells, such as malignant cells, and lower in more slowly dividing cells. For this reason, nucleolin may be an attractive therapeutic target for the treatment of malignant disease.Although considered a predominantly nucleolar protein, our finding that nucleolin was present in the plasma membrane is consistent with several reports identifying cell surface nucleolin and suggesting its role as a cell surface receptor (50Larrucea S. Gonzalez-Rubio C. Cambronero R. Ballou B. Bonay P. Lopez-Granados E. Bouvet P. Fontan G. Fresno M. Lopez-Trascas M. J. Biol. Chem. 1998; 273: 31718-31725Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar, 51Callebout C. Blanco J. Benkirane N. Krust B. Jacotot E. Guichard G. Seddiki N. Svab J. Dam E. Muller S. Briand J.-P. Hovanessian A.G. J. Biol. Chem. 1998; 273: 21988-21997Abstract Full Text Full Text PDF PubMed Scopus (65) Google Scholar, 52Semenkovich C.F. Ostlund R.E. Olson M.O. Wang J.W. Biochemistry. 1990; 29: 9708Crossref PubMed Scopus (118) Google Scholar, 53Jordan P. Heid H. Kinzel V. Kubler D. Biochemistry. 1999; 33: 14696-14706Crossref Scopus (51) Google Scholar).Previously, several mechanisms have been proposed to explain the non-sequence-specific effects of oligonucleotides. These include binding to cellular receptors (54Rockwell P. O'Connor W.J. Goldstein N.I. Zhang L.M. Stein C.A. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 6523-6528Crossref PubMed Scopus (104) Google Scholar, 55Coulson J.M. Poyner D.R. Chantry A. Irwin W.J. Akhtar S. Mol. Pharmacol. 1996; 50: 314-325PubMed Google Scholar), modulation of cytokine or growth factor activity (56Hartmann G. Krug A. Waller-Fontaine K. Endres S. Mol. Med. 1996; 2: 429-438Crossref PubMed Google Scholar, 57Sonehara K. Saito H. Kuramoto E. Yamamoto S. Yamamoto T. Tokunaga T. J. Interferon Cytokine Res. 1996; 16: 799-803Crossref PubMed Scopus (45) Google Scholar, 58Fennewald S.M. Rando R.F. J. Biol. Chem. 1995; 270: 21718-21721Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar, 59Guvakova M.A. Yabukov L.A. Vlodavsky I. Tonkinson J.L. Stein C.A. J. Biol. Chem. 1995; 270: 2620-2627Abstract Full Text Full Text PDF PubMed Scopus (288) Google Scholar, 60Ramanathan M. Lantz M. MacGregor R.D. Garovoy M.R. Hunt C.A. J. Biol. Chem. 1994; 269: 24564-24574Abstract Full Text PDF PubMed Google Scholar), inhibition of cell cycle progression (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar), changes in cell adhesion (12Saijo Y. Uchiyama B. Abe T. Satoh K. Nukiwa T. Jpn. J. Cancer Res. 1997; 88: 26-33Crossref PubMed Scopus (24) Google Scholar), and binding to an uncharacterized 45-kDa protein (26Scaggiante B. Morassutti C. Dapas B. Tolazzi G. Ustulin F. Quadrofoglio F. Eur. J. Biochem. 1998; 252: 207-215Crossref PubMed Scopus (25) Google Scholar).In this present report, we have identified nucleolin (or a nucleolin-like protein) as a G-rich oligonucleotide-binding protein, and we have shown a strong correlation between binding to this protein and antiproliferative activity for a series of G-rich oligonucleotides. We believe that these findings strongly suggest a mechanistic role for nucleolin in non-antisense inhibition of cell growth by G-rich oligonucleotides. This belief has been strengthened by our recent immunofluorescence experiments that show significant differences in nucleolin levels between cells treated with GRO29A and untreated cells. 2P. J. Bates, N. Vigneswaren, S. D. Thomas, and D. M. Miller, manuscript in preparation.The relationship between nucleolin binding and antiproliferative activity for other, non-G-rich, oligonucleotides has not yet been fully evaluated. One mixed sequence oligonucleotide (MIX1) was found to bind to nucleolin, although it had no growth inhibitory effect. Nucleolin contains RNA binding domains that can recognize specific sequences of RNA or single-stranded DNA (29Dickinson L.A. Kohwi-Shigematsu T. Mol. Cell. Biol. 1995; 15: 456-465Crossref PubMed Scopus (165) Google Scholar, 61Ghisolfi L. Joseph G. Puvion-Dutilleul F. Almaric F. Bouvet P. J. Mol. Biol. 1996; 260: 34-53Crossref PubMed Scopus (162) Google Scholar). It is possible that this particular oligonucleotide contains a sequence or structure that resembles such a recognition element.In support of our findings that nucleolin binds selectively to G-rich oligonucleotides that form stable G-quartet structures, Maizels et al. (62Hanakahi L.A. Sun H. Maizels N. J. Biol. Chem. 1999; 274: 15906-15912Abstract Full Text Full Text PDF Scopus (188) Google Scholar, 63Dempsey L.A. Sun H. Hanakahi L.A. Maizels N. J. Biol. Chem. 1999; 274: 1066-1071Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar) have recently demonstrated binding of purified nucleolin to G-quartet forming DNA sequences from immunoglobulin switch regions and ribosomal DNA. It is likely that nucleolin has currently undefined functions in vivo that depend on recognition of G-quartet forming sequences in ribosomal DNA, switch region sequences, or telomeres.It is our hypothesis that nucleolin contains a specific binding site that recognizes certain G-quartet structures and that binding at this site by a G-rich oligonucleotide inhibits one or more of the normal functions of nucleolin. The consequences of nucleolin inhibition on the growth of cells have not been well studied, but it is easy to envisage that inhibition of a protein whose functions include ribosome production, nuclear transport, and cell entry could have profound effects on the growth of cells. Oligonucleotides have the potential to recognize unique sequences of DNA or RNA with a remarkable degree of specificity. For this reason they have been considered as promising candidates to realize gene-specific therapies for the treatment of malignant, viral, and inflammatory diseases. Two major strategies of oligonucleotide-mediated therapeutic intervention have been developed, namely the antisense and antigene approaches. The antisense strategy aims to down-regulate expression of a specific gene by hybridization of the oligonucleotide to the specific mRNA, resulting in inhibition of translation (1Gewirtz A.M. Sokol D.L. Ratajczak M.Z. Blood. 1998; 92: 712-736Crossref PubMed Google Scholar, 2Crooke S.T. Antisense Nucleic Acid Drug Dev. 1998; 8: 115-122Crossref PubMed Scopus (129) Google Scholar, 3Branch A.D. Trends Biochem. Sci. 1998; 23: 45-50Abstract Full Text PDF PubMed Scopus (167) Google Scholar, 4Agrawal S. Zhao Q. Antisense Nucleic Acid Drug Dev. 1998; 8: 135-139Crossref PubMed Scopus (84) Google Scholar). The antigene strategy proposes to inhibit transcription of a target gene by means of triple helix formation between the oligonucleotide and specific sequences in the double-stranded genomic DNA (5Helene C. Giovannangeli C. Guieysse-Peugeot A.L. Praseuth D. CIBA Found. Symp. 1997; 209: 94-102PubMed Google Scholar). Clinical trials based on the antisense approach are now showing that oligonucleotides can be administered in a clinically relevant way and have few toxic side effects (1Gewirtz A.M. Sokol D.L. Ratajczak M.Z. Blood. 1998; 92: 712-736Crossref PubMed Google Scholar, 4Agrawal S. Zhao Q. Antisense Nucleic Acid Drug Dev. 1998; 8: 135-139Crossref PubMed Scopus (84) Google Scholar). Whereas both the antisense and antigene strategies have met with some success, it has become clear in recent years that the interactions of oligonucleotides with the components of a living organism go far beyond sequence-specific hybridization with the target nucleic acid. Recent studies and reexamination of early antisense data have suggested that some of the observed biological effects of antisense oligonucleotides cannot be due entirely to Watson-Crick hybridization with the target mRNA. In some cases, the expected biological effect (e.g. inhibition of cell growth or apoptosis) was achieved, but this was not accompanied by a down-regulation of the target protein and was thus unlikely to be a true antisense effect (6White J.R. Gordon-Smith E.C. Rutherford T.R. Biochem. Biophys. Res. Commun. 1996; 227: 118-124Crossref PubMed Scopus (9) Google Scholar, 7Dryden S. Pickavance L. Tidd D. Williams G. J. Endocrinol. 1998; 157: 169-175Crossref PubMed Scopus (20) Google Scholar). In many cases, it was demonstrated that other non-sequence-specific oligonucleotides could exert biological effects that equaled or exceeded the antisense sequence (8Barton C.M. Lemoine N.R. Br. J. Cancer. 1995; 71: 429-437Crossref PubMed Scopus (50) Google Scholar, 9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar, 10Benimetskaya L. Berton M. Kolbanovsky A. Benimetsky S. Stein C.A. Nucleic Acids Res. 1997; 25: 2648-2656Crossref PubMed Scopus (60) Google Scholar). Although there is currently a high awareness among antisense investigators of the importance of appropriate control oligonucleotides, and the necessity of demonstrating inhibition of target protein production (11Stein C.A. Antisense Nucleic Acid Drug Dev. 1998; 8: 129-132Crossref PubMed Scopus (56) Google Scholar), the mechanism of non-antisense effects is poorly understood. In particular, phosphodiester and phosphorothioate oligodeoxynucleotides containing contiguous guanosines (G) have been repeatedly found to have non-antisense effects on the growth of cells in culture (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar, 10Benimetskaya L. Berton M. Kolbanovsky A. Benimetsky S. Stein C.A. Nucleic Acids Res. 1997; 25: 2648-2656Crossref PubMed Scopus (60) Google Scholar, 12Saijo Y. Uchiyama B. Abe T. Satoh K. Nukiwa T. Jpn. J. Cancer Res. 1997; 88: 26-33Crossref PubMed Scopus (24) Google Scholar). There is evidence that this activity is related to the ability of these oligonucleotides to form stable structures involving intramolecular or intermolecular G-quartets (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar, 10Benimetskaya L. Berton M. Kolbanovsky A. Benimetsky S. Stein C.A. Nucleic Acids Res. 1997; 25: 2648-2656Crossref PubMed Scopus (60) Google Scholar). These are square planar arrangements of four hydrogen-bonded guanines that are stabilized by monovalent cations. Such structures are thought to play an important role in vivo, and putative quartet-forming sequences have been identified in telomeric DNA (13Sundquist W.I. Klug A. Nature. 1989; 342: 825-829Crossref PubMed Scopus (788) Google Scholar), immunoglobulin switch region sequences (14Sen D. Gilbert W. Nature. 1988; 334: 364-366Crossref PubMed Scopus (1445) Google Scholar), human immunodeficiency virus, type I, RNA (15Sundquist W.I. Heaphy S. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 3393-3397Crossref PubMed Scopus (223) Google Scholar), the fragile X repeat sequences (16Fry M. Loeb L.A. Proc. Natl. Acad. Sci. U. S. A. 1994; 91: 4950-4954Crossref PubMed Scopus (311) Google Scholar), and the retinoblastoma gene (17Murchie A.I. Lilley D.M. Nucleic Acids Res. 1992; 20: 49-53Crossref PubMed Scopus (110) Google Scholar). It has been suggested that non-antisense effects may be due to sequestration of intracellular or surface proteins by the oligonucleotide (18Gold L. Polisky B. Uhlenbeck O. Yarus M. Annu. Rev. Biochem. 1995; 64: 763-797Crossref PubMed Scopus (739) Google Scholar, 19Stein C.A. CIBA Found. Symp. 1997; 209: 79-89PubMed Google Scholar). For G-rich oligonucleotides that can form folded or G-quartet-containing structures, this binding is not mediated by recognition of the primary sequence of the oligonucleotides but rather of their unique three-dimensional shape. However, the protein targets of these oligonucleotides have not been well characterized. Here we identify a G-rich oligonucleotide-binding protein, and we show that the ability of G-rich oligonucleotides to bind to this protein is correlated with their propensity to form G-quartets, and with their ability to inhibit the growth of tumor cells. DISCUSSIONOligonucleotides are polyanionic species that are internalized in cells, probably by receptor-mediated endocytosis (37Vlassov V.V. Balakireva L.A. Yabukov L.A. Biochim. Biophys. Acta. 1994; 1197: 95-108Crossref PubMed Scopus (96) Google Scholar). They are likely to interact with many biomolecules within the cell and also in the extracellular membrane by virtue of both their charge and their shape, as well as sequence-specific interactions with nucleic acids. The proteins that bind to oligonucleotides and mediate non-antisense effects have not yet been unequivocally identified.We have described G-rich oligonucleotides that have potent growth inhibitory effects that are unrelated to any expected antisense or antigene activity. Although we have not yet delineated the mechanism of these effects, we have demonstrated that the antiproliferative effects of these oligonucleotides are related to their ability to bind to a specific cellular protein. Because the GRO-binding protein is also recognized by anti-nucleolin antibodies, we conclude that this protein is either nucleolin itself or a protein of a similar size that shares immunogenic similarities with nucleolin.Nucleolin is an abundant multifunctional 110-kDa phosphoprotein, thought to be located predominantly in the nucleolus of proliferating cells (for reviews, see Refs. 38Tuteja R. Tuteja N. Crit. Rev. Mol. Biol. 1998; 33: 407-436Crossref PubMed Scopus (151) Google Scholar and 39Ginisty H. Sicard H. Roger B. Bouvet P. J. Cell Sci. 1999; 112: 761-772Crossref PubMed Google Scholar). It has been implicated in many aspects of ribosome biogenesis including the control of rDNA transcription, pre-ribosome packaging, and organization of nucleolar chromatin (38Tuteja R. Tuteja N. Crit. Rev. Mol. Biol. 1998; 33: 407-436Crossref PubMed Scopus (151) Google Scholar, 39Ginisty H. Sicard H. Roger B. Bouvet P. J. Cell Sci. 1999; 112: 761-772Crossref PubMed Google Scholar, 40Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar). Another emerging role for nucleolin is as a shuttle protein that transports viral and cellular proteins between the cytoplasm and nucleus/nucleolus of the cell (41Kibbey M.C. Johnson B. Petryshyn R. Jucker M. Kleinman H.K. J. Neurosci. Res. 1995; 42: 314-322Crossref PubMed Scopus (60) Google Scholar, 42Lee C.H. Chang S.C. Chen C.J. Chang M.F. J. Biol. Chem. 1998; 273: 7650-7656Abstract Full Text Full Text PDF PubMed Scopus (73) Google Scholar, 43Waggoner S. Sarnow P. J. Virol. 1998; 72: 6699-6709Crossref PubMed Google Scholar). Nucleolin is also implicated, directly or indirectly, in other roles including nuclear matrix structure (44Gotzmann J. Eger A. Meissner M. Grimm R. Gerner C. Sauermann G. Foisner R. Electrophoresis. 1997; 18: 2645-2653Crossref PubMed Scopus (27) Google Scholar), cytokinesis, and nuclear division (45Léger-Silvestre I. Gulli M.P. Noaillac-Depeyre J. Faubladier M. Sicard H. Caizergues-Ferrer M. Gas N. Chromosoma. 1997; 105: 542-552Crossref PubMed Scopus (21) Google Scholar) and as an RNA and DNA helicase (46Tuteja N. Huang N.W. Skopac D. Tuteja R. Hrvatic S. Zhang J. Pongor S. Joseph G. Faucher C. Almaric F. Falasci A. Gene (Amst.). 1995; 160: 143-148Crossref PubMed Scopus (87) Google Scholar). Its multifunctional nature is reflected in its multidomain structure, consisting of a histone-like N terminus, a central domain containing RNA recognition motifs, and a glycine- and arginine-rich C terminus (47Lapeyre B. Bourbon H. Amalric F. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 1472-1476Crossref PubMed Scopus (312) Google Scholar). Levels of nucleolin are known to relate to the rate of cellular proliferation (48Derenzini M. Sirri V. Trere D. Ochs R.L. Lab. Invest. 1995; 73: 497-502PubMed Google Scholar, 49Roussel P. Hernandez-Verdun D. Exp. Cell Res. 1994; 214: 465-472Crossref PubMed Scopus (166) Google Scholar), being elevated in rapidly proliferating cells, such as malignant cells, and lower in more slowly dividing cells. For this reason, nucleolin may be an attractive therapeutic target for the treatment of malignant disease.Although considered a predominantly nucleolar protein, our finding that nucleolin was present in the plasma membrane is consistent with several reports identifying cell surface nucleolin and suggesting its role as a cell surface receptor (50Larrucea S. Gonzalez-Rubio C. Cambronero R. Ballou B. Bonay P. Lopez-Granados E. Bouvet P. Fontan G. Fresno M. Lopez-Trascas M. J. Biol. Chem. 1998; 273: 31718-31725Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar, 51Callebout C. Blanco J. Benkirane N. Krust B. Jacotot E. Guichard G. Seddiki N. Svab J. Dam E. Muller S. Briand J.-P. Hovanessian A.G. J. Biol. Chem. 1998; 273: 21988-21997Abstract Full Text Full Text PDF PubMed Scopus (65) Google Scholar, 52Semenkovich C.F. Ostlund R.E. Olson M.O. Wang J.W. Biochemistry. 1990; 29: 9708Crossref PubMed Scopus (118) Google Scholar, 53Jordan P. Heid H. Kinzel V. Kubler D. Biochemistry. 1999; 33: 14696-14706Crossref Scopus (51) Google Scholar).Previously, several mechanisms have been proposed to explain the non-sequence-specific effects of oligonucleotides. These include binding to cellular receptors (54Rockwell P. O'Connor W.J. Goldstein N.I. Zhang L.M. Stein C.A. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 6523-6528Crossref PubMed Scopus (104) Google Scholar, 55Coulson J.M. Poyner D.R. Chantry A. Irwin W.J. Akhtar S. Mol. Pharmacol. 1996; 50: 314-325PubMed Google Scholar), modulation of cytokine or growth factor activity (56Hartmann G. Krug A. Waller-Fontaine K. Endres S. Mol. Med. 1996; 2: 429-438Crossref PubMed Google Scholar, 57Sonehara K. Saito H. Kuramoto E. Yamamoto S. Yamamoto T. Tokunaga T. J. Interferon Cytokine Res. 1996; 16: 799-803Crossref PubMed Scopus (45) Google Scholar, 58Fennewald S.M. Rando R.F. J. Biol. Chem. 1995; 270: 21718-21721Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar, 59Guvakova M.A. Yabukov L.A. Vlodavsky I. Tonkinson J.L. Stein C.A. J. Biol. Chem. 1995; 270: 2620-2627Abstract Full Text Full Text PDF PubMed Scopus (288) Google Scholar, 60Ramanathan M. Lantz M. MacGregor R.D. Garovoy M.R. Hunt C.A. J. Biol. Chem. 1994; 269: 24564-24574Abstract Full Text PDF PubMed Google Scholar), inhibition of cell cycle progression (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar), changes in cell adhesion (12Saijo Y. Uchiyama B. Abe T. Satoh K. Nukiwa T. Jpn. J. Cancer Res. 1997; 88: 26-33Crossref PubMed Scopus (24) Google Scholar), and binding to an uncharacterized 45-kDa protein (26Scaggiante B. Morassutti C. Dapas B. Tolazzi G. Ustulin F. Quadrofoglio F. Eur. J. Biochem. 1998; 252: 207-215Crossref PubMed Scopus (25) Google Scholar).In this present report, we have identified nucleolin (or a nucleolin-like protein) as a G-rich oligonucleotide-binding protein, and we have shown a strong correlation between binding to this protein and antiproliferative activity for a series of G-rich oligonucleotides. We believe that these findings strongly suggest a mechanistic role for nucleolin in non-antisense inhibition of cell growth by G-rich oligonucleotides. This belief has been strengthened by our recent immunofluorescence experiments that show significant differences in nucleolin levels between cells treated with GRO29A and untreated cells. 2P. J. Bates, N. Vigneswaren, S. D. Thomas, and D. M. Miller, manuscript in preparation.The relationship between nucleolin binding and antiproliferative activity for other, non-G-rich, oligonucleotides has not yet been fully evaluated. One mixed sequence oligonucleotide (MIX1) was found to bind to nucleolin, although it had no growth inhibitory effect. Nucleolin contains RNA binding domains that can recognize specific sequences of RNA or single-stranded DNA (29Dickinson L.A. Kohwi-Shigematsu T. Mol. Cell. Biol. 1995; 15: 456-465Crossref PubMed Scopus (165) Google Scholar, 61Ghisolfi L. Joseph G. Puvion-Dutilleul F. Almaric F. Bouvet P. J. Mol. Biol. 1996; 260: 34-53Crossref PubMed Scopus (162) Google Scholar). It is possible that this particular oligonucleotide contains a sequence or structure that resembles such a recognition element.In support of our findings that nucleolin binds selectively to G-rich oligonucleotides that form stable G-quartet structures, Maizels et al. (62Hanakahi L.A. Sun H. Maizels N. J. Biol. Chem. 1999; 274: 15906-15912Abstract Full Text Full Text PDF Scopus (188) Google Scholar, 63Dempsey L.A. Sun H. Hanakahi L.A. Maizels N. J. Biol. Chem. 1999; 274: 1066-1071Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar) have recently demonstrated binding of purified nucleolin to G-quartet forming DNA sequences from immunoglobulin switch regions and ribosomal DNA. It is likely that nucleolin has currently undefined functions in vivo that depend on recognition of G-quartet forming sequences in ribosomal DNA, switch region sequences, or telomeres.It is our hypothesis that nucleolin contains a specific binding site that recognizes certain G-quartet structures and that binding at this site by a G-rich oligonucleotide inhibits one or more of the normal functions of nucleolin. The consequences of nucleolin inhibition on the growth of cells have not been well studied, but it is easy to envisage that inhibition of a protein whose functions include ribosome production, nuclear transport, and cell entry could have profound effects on the growth of cells. Oligonucleotides are polyanionic species that are internalized in cells, probably by receptor-mediated endocytosis (37Vlassov V.V. Balakireva L.A. Yabukov L.A. Biochim. Biophys. Acta. 1994; 1197: 95-108Crossref PubMed Scopus (96) Google Scholar). They are likely to interact with many biomolecules within the cell and also in the extracellular membrane by virtue of both their charge and their shape, as well as sequence-specific interactions with nucleic acids. The proteins that bind to oligonucleotides and mediate non-antisense effects have not yet been unequivocally identified. We have described G-rich oligonucleotides that have potent growth inhibitory effects that are unrelated to any expected antisense or antigene activity. Although we have not yet delineated the mechanism of these effects, we have demonstrated that the antiproliferative effects of these oligonucleotides are related to their ability to bind to a specific cellular protein. Because the GRO-binding protein is also recognized by anti-nucleolin antibodies, we conclude that this protein is either nucleolin itself or a protein of a similar size that shares immunogenic similarities with nucleolin. Nucleolin is an abundant multifunctional 110-kDa phosphoprotein, thought to be located predominantly in the nucleolus of proliferating cells (for reviews, see Refs. 38Tuteja R. Tuteja N. Crit. Rev. Mol. Biol. 1998; 33: 407-436Crossref PubMed Scopus (151) Google Scholar and 39Ginisty H. Sicard H. Roger B. Bouvet P. J. Cell Sci. 1999; 112: 761-772Crossref PubMed Google Scholar). It has been implicated in many aspects of ribosome biogenesis including the control of rDNA transcription, pre-ribosome packaging, and organization of nucleolar chromatin (38Tuteja R. Tuteja N. Crit. Rev. Mol. Biol. 1998; 33: 407-436Crossref PubMed Scopus (151) Google Scholar, 39Ginisty H. Sicard H. Roger B. Bouvet P. J. Cell Sci. 1999; 112: 761-772Crossref PubMed Google Scholar, 40Ginisty H. Amalric F. Bouvet P. EMBO J. 1998; 17: 1476-1486Crossref PubMed Scopus (250) Google Scholar). Another emerging role for nucleolin is as a shuttle protein that transports viral and cellular proteins between the cytoplasm and nucleus/nucleolus of the cell (41Kibbey M.C. Johnson B. Petryshyn R. Jucker M. Kleinman H.K. J. Neurosci. Res. 1995; 42: 314-322Crossref PubMed Scopus (60) Google Scholar, 42Lee C.H. Chang S.C. Chen C.J. Chang M.F. J. Biol. Chem. 1998; 273: 7650-7656Abstract Full Text Full Text PDF PubMed Scopus (73) Google Scholar, 43Waggoner S. Sarnow P. J. Virol. 1998; 72: 6699-6709Crossref PubMed Google Scholar). Nucleolin is also implicated, directly or indirectly, in other roles including nuclear matrix structure (44Gotzmann J. Eger A. Meissner M. Grimm R. Gerner C. Sauermann G. Foisner R. Electrophoresis. 1997; 18: 2645-2653Crossref PubMed Scopus (27) Google Scholar), cytokinesis, and nuclear division (45Léger-Silvestre I. Gulli M.P. Noaillac-Depeyre J. Faubladier M. Sicard H. Caizergues-Ferrer M. Gas N. Chromosoma. 1997; 105: 542-552Crossref PubMed Scopus (21) Google Scholar) and as an RNA and DNA helicase (46Tuteja N. Huang N.W. Skopac D. Tuteja R. Hrvatic S. Zhang J. Pongor S. Joseph G. Faucher C. Almaric F. Falasci A. Gene (Amst.). 1995; 160: 143-148Crossref PubMed Scopus (87) Google Scholar). Its multifunctional nature is reflected in its multidomain structure, consisting of a histone-like N terminus, a central domain containing RNA recognition motifs, and a glycine- and arginine-rich C terminus (47Lapeyre B. Bourbon H. Amalric F. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 1472-1476Crossref PubMed Scopus (312) Google Scholar). Levels of nucleolin are known to relate to the rate of cellular proliferation (48Derenzini M. Sirri V. Trere D. Ochs R.L. Lab. Invest. 1995; 73: 497-502PubMed Google Scholar, 49Roussel P. Hernandez-Verdun D. Exp. Cell Res. 1994; 214: 465-472Crossref PubMed Scopus (166) Google Scholar), being elevated in rapidly proliferating cells, such as malignant cells, and lower in more slowly dividing cells. For this reason, nucleolin may be an attractive therapeutic target for the treatment of malignant disease. Although considered a predominantly nucleolar protein, our finding that nucleolin was present in the plasma membrane is consistent with several reports identifying cell surface nucleolin and suggesting its role as a cell surface receptor (50Larrucea S. Gonzalez-Rubio C. Cambronero R. Ballou B. Bonay P. Lopez-Granados E. Bouvet P. Fontan G. Fresno M. Lopez-Trascas M. J. Biol. Chem. 1998; 273: 31718-31725Abstract Full Text Full Text PDF PubMed Scopus (67) Google Scholar, 51Callebout C. Blanco J. Benkirane N. Krust B. Jacotot E. Guichard G. Seddiki N. Svab J. Dam E. Muller S. Briand J.-P. Hovanessian A.G. J. Biol. Chem. 1998; 273: 21988-21997Abstract Full Text Full Text PDF PubMed Scopus (65) Google Scholar, 52Semenkovich C.F. Ostlund R.E. Olson M.O. Wang J.W. Biochemistry. 1990; 29: 9708Crossref PubMed Scopus (118) Google Scholar, 53Jordan P. Heid H. Kinzel V. Kubler D. Biochemistry. 1999; 33: 14696-14706Crossref Scopus (51) Google Scholar). Previously, several mechanisms have been proposed to explain the non-sequence-specific effects of oligonucleotides. These include binding to cellular receptors (54Rockwell P. O'Connor W.J. Goldstein N.I. Zhang L.M. Stein C.A. Proc. Natl. Acad. Sci. U. S. A. 1997; 94: 6523-6528Crossref PubMed Scopus (104) Google Scholar, 55Coulson J.M. Poyner D.R. Chantry A. Irwin W.J. Akhtar S. Mol. Pharmacol. 1996; 50: 314-325PubMed Google Scholar), modulation of cytokine or growth factor activity (56Hartmann G. Krug A. Waller-Fontaine K. Endres S. Mol. Med. 1996; 2: 429-438Crossref PubMed Google Scholar, 57Sonehara K. Saito H. Kuramoto E. Yamamoto S. Yamamoto T. Tokunaga T. J. Interferon Cytokine Res. 1996; 16: 799-803Crossref PubMed Scopus (45) Google Scholar, 58Fennewald S.M. Rando R.F. J. Biol. Chem. 1995; 270: 21718-21721Abstract Full Text Full Text PDF PubMed Scopus (57) Google Scholar, 59Guvakova M.A. Yabukov L.A. Vlodavsky I. Tonkinson J.L. Stein C.A. J. Biol. Chem. 1995; 270: 2620-2627Abstract Full Text Full Text PDF PubMed Scopus (288) Google Scholar, 60Ramanathan M. Lantz M. MacGregor R.D. Garovoy M.R. Hunt C.A. J. Biol. Chem. 1994; 269: 24564-24574Abstract Full Text PDF PubMed Google Scholar), inhibition of cell cycle progression (9Burgess T.L. Fisher E.F. Ross S.L. Bready J.V. Qian Y.X. Bayewitch L.A. Cohen A.M. Herrera C.J. Hu S.S. Kramer T.B. Lott F.D. Martin F.H. Pierce G.F. Simonet L. Farrell C.L. Proc. Natl. Acad. Sci. U. S. A. 1995; 92: 4051-4055Crossref PubMed Scopus (316) Google Scholar), changes in cell adhesion (12Saijo Y. Uchiyama B. Abe T. Satoh K. Nukiwa T. Jpn. J. Cancer Res. 1997; 88: 26-33Crossref PubMed Scopus (24) Google Scholar), and binding to an uncharacterized 45-kDa protein (26Scaggiante B. Morassutti C. Dapas B. Tolazzi G. Ustulin F. Quadrofoglio F. Eur. J. Biochem. 1998; 252: 207-215Crossref PubMed Scopus (25) Google Scholar). In this present report, we have identified nucleolin (or a nucleolin-like protein) as a G-rich oligonucleotide-binding protein, and we have shown a strong correlation between binding to this protein and antiproliferative activity for a series of G-rich oligonucleotides. We believe that these findings strongly suggest a mechanistic role for nucleolin in non-antisense inhibition of cell growth by G-rich oligonucleotides. This belief has been strengthened by our recent immunofluorescence experiments that show significant differences in nucleolin levels between cells treated with GRO29A and untreated cells. 2P. J. Bates, N. Vigneswaren, S. D. Thomas, and D. M. Miller, manuscript in preparation. The relationship between nucleolin binding and antiproliferative activity for other, non-G-rich, oligonucleotides has not yet been fully evaluated. One mixed sequence oligonucleotide (MIX1) was found to bind to nucleolin, although it had no growth inhibitory effect. Nucleolin contains RNA binding domains that can recognize specific sequences of RNA or single-stranded DNA (29Dickinson L.A. Kohwi-Shigematsu T. Mol. Cell. Biol. 1995; 15: 456-465Crossref PubMed Scopus (165) Google Scholar, 61Ghisolfi L. Joseph G. Puvion-Dutilleul F. Almaric F. Bouvet P. J. Mol. Biol. 1996; 260: 34-53Crossref PubMed Scopus (162) Google Scholar). It is possible that this particular oligonucleotide contains a sequence or structure that resembles such a recognition element. In support of our findings that nucleolin binds selectively to G-rich oligonucleotides that form stable G-quartet structures, Maizels et al. (62Hanakahi L.A. Sun H. Maizels N. J. Biol. Chem. 1999; 274: 15906-15912Abstract Full Text Full Text PDF Scopus (188) Google Scholar, 63Dempsey L.A. Sun H. Hanakahi L.A. Maizels N. J. Biol. Chem. 1999; 274: 1066-1071Abstract Full Text Full Text PDF PubMed Scopus (138) Google Scholar) have recently demonstrated binding of purified nucleolin to G-quartet forming DNA sequences from immunoglobulin switch regions and ribosomal DNA. It is likely that nucleolin has currently undefined functions in vivo that depend on recognition of G-quartet forming sequences in ribosomal DNA, switch region sequences, or telomeres. It is our hypothesis that nucleolin contains a specific binding site that recognizes certain G-quartet structures and that binding at this site by a G-rich oligonucleotide inhibits one or more of the normal functions of nucleolin. The consequences of nucleolin inhibition on the growth of cells have not been well studied, but it is easy to envisage that inhibition of a protein whose functions include ribosome production, nuclear transport, and cell entry could have profound effects on the growth of cells. We thank Dr. Marie W. Wooten (Auburn University, AL) for the gift of nucleolin antiserum." @default.
- W2124258497 created "2016-06-24" @default.
- W2124258497 creator A5035332660 @default.
- W2124258497 creator A5049995307 @default.
- W2124258497 creator A5063771330 @default.
- W2124258497 creator A5064208114 @default.
- W2124258497 creator A5071197441 @default.
- W2124258497 date "1999-09-01" @default.
- W2124258497 modified "2023-10-15" @default.
- W2124258497 title "Antiproliferative Activity of G-rich Oligonucleotides Correlates with Protein Binding" @default.
- W2124258497 cites W135934099 @default.
- W2124258497 cites W1502851840 @default.
- W2124258497 cites W1544973014 @default.
- W2124258497 cites W1665409553 @default.
- W2124258497 cites W1775310695 @default.
- W2124258497 cites W1843585755 @default.
- W2124258497 cites W1884640218 @default.
- W2124258497 cites W1925850732 @default.
- W2124258497 cites W1975071436 @default.
- W2124258497 cites W1976551491 @default.
- W2124258497 cites W1983199037 @default.
- W2124258497 cites W1984330700 @default.
- W2124258497 cites W1985318337 @default.
- W2124258497 cites W1986071629 @default.
- W2124258497 cites W1986957599 @default.
- W2124258497 cites W1991456836 @default.
- W2124258497 cites W1997125262 @default.
- W2124258497 cites W1998905553 @default.
- W2124258497 cites W2001207625 @default.
- W2124258497 cites W2003367624 @default.
- W2124258497 cites W2003566015 @default.
- W2124258497 cites W2007812774 @default.
- W2124258497 cites W2009580295 @default.
- W2124258497 cites W2016696388 @default.
- W2124258497 cites W2018539096 @default.
- W2124258497 cites W2019766860 @default.
- W2124258497 cites W2024933696 @default.
- W2124258497 cites W2026512714 @default.
- W2124258497 cites W2029020439 @default.
- W2124258497 cites W2030400204 @default.
- W2124258497 cites W2037604673 @default.
- W2124258497 cites W2052968074 @default.
- W2124258497 cites W2052973382 @default.
- W2124258497 cites W2063970781 @default.
- W2124258497 cites W2066253418 @default.
- W2124258497 cites W2067877700 @default.
- W2124258497 cites W2070799892 @default.
- W2124258497 cites W2071834091 @default.
- W2124258497 cites W2073600895 @default.
- W2124258497 cites W2073722866 @default.
- W2124258497 cites W2075881778 @default.
- W2124258497 cites W2079768304 @default.
- W2124258497 cites W2089583362 @default.
- W2124258497 cites W2092156970 @default.
- W2124258497 cites W2095477901 @default.
- W2124258497 cites W2100233791 @default.
- W2124258497 cites W2114754764 @default.
- W2124258497 cites W2122210884 @default.
- W2124258497 cites W2132714970 @default.
- W2124258497 cites W2134672977 @default.
- W2124258497 cites W2139423068 @default.
- W2124258497 cites W2146354013 @default.
- W2124258497 cites W4251138628 @default.
- W2124258497 cites W2053473479 @default.
- W2124258497 doi "https://doi.org/10.1074/jbc.274.37.26369" @default.
- W2124258497 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10473594" @default.
- W2124258497 hasPublicationYear "1999" @default.
- W2124258497 type Work @default.
- W2124258497 sameAs 2124258497 @default.
- W2124258497 citedByCount "357" @default.
- W2124258497 countsByYear W21242584972012 @default.
- W2124258497 countsByYear W21242584972013 @default.
- W2124258497 countsByYear W21242584972014 @default.
- W2124258497 countsByYear W21242584972015 @default.
- W2124258497 countsByYear W21242584972016 @default.
- W2124258497 countsByYear W21242584972017 @default.
- W2124258497 countsByYear W21242584972018 @default.
- W2124258497 countsByYear W21242584972019 @default.
- W2124258497 countsByYear W21242584972020 @default.
- W2124258497 countsByYear W21242584972021 @default.
- W2124258497 countsByYear W21242584972022 @default.
- W2124258497 countsByYear W21242584972023 @default.
- W2124258497 crossrefType "journal-article" @default.
- W2124258497 hasAuthorship W2124258497A5035332660 @default.
- W2124258497 hasAuthorship W2124258497A5049995307 @default.
- W2124258497 hasAuthorship W2124258497A5063771330 @default.
- W2124258497 hasAuthorship W2124258497A5064208114 @default.
- W2124258497 hasAuthorship W2124258497A5071197441 @default.
- W2124258497 hasBestOaLocation W21242584971 @default.
- W2124258497 hasConcept C129312508 @default.
- W2124258497 hasConcept C185592680 @default.
- W2124258497 hasConcept C552990157 @default.
- W2124258497 hasConcept C55493867 @default.
- W2124258497 hasConcept C70721500 @default.
- W2124258497 hasConcept C86803240 @default.
- W2124258497 hasConceptScore W2124258497C129312508 @default.
- W2124258497 hasConceptScore W2124258497C185592680 @default.
- W2124258497 hasConceptScore W2124258497C552990157 @default.