Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124337923> ?p ?o ?g. }
- W2124337923 endingPage "10084" @default.
- W2124337923 startingPage "10061" @default.
- W2124337923 abstract "Abstract. Black carbon aerosols (BC) at a London urban site were characterised in both winter- and summertime 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorisation (PMF) factors of organic aerosol mass spectra measured by a high-resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However, the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC–AMS–PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), and easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm and 169 ± 29 nm, respectively. The corresponding bulk relative coating thickness of BC (coated particle size/BC core – Dp/Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16 and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10%, respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W, SE and E air masses, the BCsf mass fractions ranged from 16 ± 6%, 24 ± 10% and 39 ± 14%, respectively). An increased fraction of non-BC particles (particles that did not contain a BC core) was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC–AMS–PMF multiple linear regression method (BC–AMS–PMF : SP2 ratio = 1.05, r2 = 0.80) over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed absorption Ångström exponent (αwb) had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase." @default.
- W2124337923 created "2016-06-24" @default.
- W2124337923 creator A5004095631 @default.
- W2124337923 creator A5004218679 @default.
- W2124337923 creator A5013893779 @default.
- W2124337923 creator A5028324936 @default.
- W2124337923 creator A5031212154 @default.
- W2124337923 creator A5031691523 @default.
- W2124337923 creator A5036194594 @default.
- W2124337923 creator A5040838830 @default.
- W2124337923 creator A5042577189 @default.
- W2124337923 creator A5047352067 @default.
- W2124337923 creator A5070379325 @default.
- W2124337923 creator A5075527444 @default.
- W2124337923 creator A5079055630 @default.
- W2124337923 creator A5079112906 @default.
- W2124337923 creator A5087504796 @default.
- W2124337923 date "2014-09-22" @default.
- W2124337923 modified "2023-10-17" @default.
- W2124337923 title "Size distribution, mixing state and source apportionment of black carbon aerosol in London during wintertime" @default.
- W2124337923 cites W1907369419 @default.
- W2124337923 cites W1964259994 @default.
- W2124337923 cites W1968814537 @default.
- W2124337923 cites W1984981557 @default.
- W2124337923 cites W1988299836 @default.
- W2124337923 cites W1990068206 @default.
- W2124337923 cites W1995148828 @default.
- W2124337923 cites W2002022239 @default.
- W2124337923 cites W2004860873 @default.
- W2124337923 cites W2005114907 @default.
- W2124337923 cites W2009785411 @default.
- W2124337923 cites W2013358571 @default.
- W2124337923 cites W2016146814 @default.
- W2124337923 cites W2021198116 @default.
- W2124337923 cites W2022130129 @default.
- W2124337923 cites W2022656631 @default.
- W2124337923 cites W2025655062 @default.
- W2124337923 cites W2036302056 @default.
- W2124337923 cites W2043437215 @default.
- W2124337923 cites W2047862828 @default.
- W2124337923 cites W2050908700 @default.
- W2124337923 cites W2052457809 @default.
- W2124337923 cites W2053651823 @default.
- W2124337923 cites W2056857971 @default.
- W2124337923 cites W2059826896 @default.
- W2124337923 cites W2065299271 @default.
- W2124337923 cites W2076094312 @default.
- W2124337923 cites W2076549499 @default.
- W2124337923 cites W2081118881 @default.
- W2124337923 cites W2081965590 @default.
- W2124337923 cites W2083340840 @default.
- W2124337923 cites W2083988711 @default.
- W2124337923 cites W2089079408 @default.
- W2124337923 cites W2092208950 @default.
- W2124337923 cites W2094905163 @default.
- W2124337923 cites W2095850584 @default.
- W2124337923 cites W2098106771 @default.
- W2124337923 cites W2106528128 @default.
- W2124337923 cites W2110294797 @default.
- W2124337923 cites W2110596142 @default.
- W2124337923 cites W2112340488 @default.
- W2124337923 cites W2113804149 @default.
- W2124337923 cites W2118893723 @default.
- W2124337923 cites W2119212442 @default.
- W2124337923 cites W2119380384 @default.
- W2124337923 cites W2127794648 @default.
- W2124337923 cites W2131084867 @default.
- W2124337923 cites W2135744048 @default.
- W2124337923 cites W2136263769 @default.
- W2124337923 cites W2136760397 @default.
- W2124337923 cites W2137500162 @default.
- W2124337923 cites W2138088023 @default.
- W2124337923 cites W2140020156 @default.
- W2124337923 cites W2142380122 @default.
- W2124337923 cites W2142656089 @default.
- W2124337923 cites W2148674484 @default.
- W2124337923 cites W2149521163 @default.
- W2124337923 cites W2161183037 @default.
- W2124337923 cites W2162214076 @default.
- W2124337923 cites W2163109203 @default.
- W2124337923 cites W2163706866 @default.
- W2124337923 cites W2164494411 @default.
- W2124337923 cites W2168143240 @default.
- W2124337923 cites W2168375900 @default.
- W2124337923 cites W2291431326 @default.
- W2124337923 cites W4230528091 @default.
- W2124337923 cites W4234491946 @default.
- W2124337923 cites W4239717312 @default.
- W2124337923 doi "https://doi.org/10.5194/acp-14-10061-2014" @default.
- W2124337923 hasPublicationYear "2014" @default.
- W2124337923 type Work @default.
- W2124337923 sameAs 2124337923 @default.
- W2124337923 citedByCount "144" @default.
- W2124337923 countsByYear W21243379232014 @default.
- W2124337923 countsByYear W21243379232015 @default.
- W2124337923 countsByYear W21243379232016 @default.
- W2124337923 countsByYear W21243379232017 @default.
- W2124337923 countsByYear W21243379232018 @default.