Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124432125> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2124432125 abstract "Abstract: Multivariate microarray gene expression data are commonly collected to study the genomic responses under ordered conditions such as over increasing/decreasing dose levels or over time during biological processes. One important question from such multivariate gene expression experiments is to identify genes that show different expression patterns over treatment dosages or over time and pathways that are perturbed during a given biological process. In this paper, we develop a hidden Markov random field model for multivariate expression data in order to identify genes and subnetworks that are related to biological processes, where the dependency of the differential expression patterns of genes on the networks are modeled by a Markov random field. Simulation studies indicated that the method is quite effective in identifying genes and the modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway information, with similar observed false discovery rates. We applied the proposed methods for analysis of a microarray time course gene expression study of TrkAand TrkB-transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal adhesion and prion disease pathways that may explain cell differentiation in TrkA-transfected cell lines. Multivariate microarray gene expression data are commonly collected to study the genomic responses under ordered conditions such as over increasing/decreasing dose levels or over time during biological processes. One important question from such multivariate gene expression experiments is to identify genes that show different expression patterns over treatment dosages or over time and pathways that are perturbed during a given biological process. In this paper, we develop a hidden Markov random field model for multivariate expression data in order to identify genes and subnetworks that are related to biological processes, where the dependency of the differential expression patterns of genes on the networks are modeled by a Markov random field. Simulation studies indicated that the method is quite effective in identifying genes and the modified subnetworks and has higher sensitivity than the commonly used procedures that do not use the pathway information, with similar observed false discovery rates. We applied the proposed methods for analysis of a microarray time course gene expression study of TrkAand TrkB-transfected neuroblastoma cell lines and identified genes and subnetworks on MAPK, focal adhesion and prion disease pathways that may explain cell differentiation in TrkA-transfected cell lines. Incorporation of Genetic Pathway Information into Analysis of Multivariate Gene Expression Data Wei Zhi, Jane Minturn, Eric Rappaport, Garrett Brodeur, and Hongzhe Li Genomics and Computational Biology Graduate Program, University of Pennsylvania School of Medicine, PA 19104, USA. Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA" @default.
- W2124432125 created "2016-06-24" @default.
- W2124432125 creator A5004950779 @default.
- W2124432125 creator A5013237430 @default.
- W2124432125 creator A5016875098 @default.
- W2124432125 creator A5079323221 @default.
- W2124432125 creator A5082318113 @default.
- W2124432125 date "2008-01-01" @default.
- W2124432125 modified "2023-09-26" @default.
- W2124432125 title "Incorporation of Genetic Pathway Information into Analysis of Multivariate Gene Expression Data" @default.
- W2124432125 cites W110908052 @default.
- W2124432125 cites W1554544485 @default.
- W2124432125 cites W1987037087 @default.
- W2124432125 cites W1995819749 @default.
- W2124432125 cites W2003489735 @default.
- W2124432125 cites W2008333101 @default.
- W2124432125 cites W2024037712 @default.
- W2124432125 cites W2037893131 @default.
- W2124432125 cites W2064533818 @default.
- W2124432125 cites W2067606868 @default.
- W2124432125 cites W2072787818 @default.
- W2124432125 cites W2081098333 @default.
- W2124432125 cites W2103181800 @default.
- W2124432125 cites W2110161012 @default.
- W2124432125 cites W2114220616 @default.
- W2124432125 cites W2122683221 @default.
- W2124432125 cites W2148029218 @default.
- W2124432125 cites W2152653671 @default.
- W2124432125 cites W2154452346 @default.
- W2124432125 cites W2159482845 @default.
- W2124432125 cites W2164354034 @default.
- W2124432125 cites W2170414736 @default.
- W2124432125 cites W2170989872 @default.
- W2124432125 cites W2905074708 @default.
- W2124432125 hasPublicationYear "2008" @default.
- W2124432125 type Work @default.
- W2124432125 sameAs 2124432125 @default.
- W2124432125 citedByCount "0" @default.
- W2124432125 crossrefType "journal-article" @default.
- W2124432125 hasAuthorship W2124432125A5004950779 @default.
- W2124432125 hasAuthorship W2124432125A5013237430 @default.
- W2124432125 hasAuthorship W2124432125A5016875098 @default.
- W2124432125 hasAuthorship W2124432125A5079323221 @default.
- W2124432125 hasAuthorship W2124432125A5082318113 @default.
- W2124432125 hasConcept C104317684 @default.
- W2124432125 hasConcept C119857082 @default.
- W2124432125 hasConcept C150194340 @default.
- W2124432125 hasConcept C161584116 @default.
- W2124432125 hasConcept C18431079 @default.
- W2124432125 hasConcept C186836561 @default.
- W2124432125 hasConcept C24361400 @default.
- W2124432125 hasConcept C41008148 @default.
- W2124432125 hasConcept C54355233 @default.
- W2124432125 hasConcept C70721500 @default.
- W2124432125 hasConcept C8415881 @default.
- W2124432125 hasConcept C86803240 @default.
- W2124432125 hasConcept C9927688 @default.
- W2124432125 hasConceptScore W2124432125C104317684 @default.
- W2124432125 hasConceptScore W2124432125C119857082 @default.
- W2124432125 hasConceptScore W2124432125C150194340 @default.
- W2124432125 hasConceptScore W2124432125C161584116 @default.
- W2124432125 hasConceptScore W2124432125C18431079 @default.
- W2124432125 hasConceptScore W2124432125C186836561 @default.
- W2124432125 hasConceptScore W2124432125C24361400 @default.
- W2124432125 hasConceptScore W2124432125C41008148 @default.
- W2124432125 hasConceptScore W2124432125C54355233 @default.
- W2124432125 hasConceptScore W2124432125C70721500 @default.
- W2124432125 hasConceptScore W2124432125C8415881 @default.
- W2124432125 hasConceptScore W2124432125C86803240 @default.
- W2124432125 hasConceptScore W2124432125C9927688 @default.
- W2124432125 hasLocation W21244321251 @default.
- W2124432125 hasOpenAccess W2124432125 @default.
- W2124432125 hasPrimaryLocation W21244321251 @default.
- W2124432125 hasRelatedWork W1963713509 @default.
- W2124432125 hasRelatedWork W1973571272 @default.
- W2124432125 hasRelatedWork W1976169036 @default.
- W2124432125 hasRelatedWork W2013396374 @default.
- W2124432125 hasRelatedWork W2019098678 @default.
- W2124432125 hasRelatedWork W2053490519 @default.
- W2124432125 hasRelatedWork W2073994740 @default.
- W2124432125 hasRelatedWork W2136679584 @default.
- W2124432125 hasRelatedWork W2137573464 @default.
- W2124432125 hasRelatedWork W2138049103 @default.
- W2124432125 hasRelatedWork W2140949164 @default.
- W2124432125 hasRelatedWork W2242815335 @default.
- W2124432125 hasRelatedWork W2265464824 @default.
- W2124432125 hasRelatedWork W2338089754 @default.
- W2124432125 hasRelatedWork W2560266832 @default.
- W2124432125 hasRelatedWork W2561135783 @default.
- W2124432125 hasRelatedWork W2776271604 @default.
- W2124432125 hasRelatedWork W2952708157 @default.
- W2124432125 hasRelatedWork W3033444700 @default.
- W2124432125 hasRelatedWork W3102022799 @default.
- W2124432125 isParatext "false" @default.
- W2124432125 isRetracted "false" @default.
- W2124432125 magId "2124432125" @default.
- W2124432125 workType "article" @default.