Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124661962> ?p ?o ?g. }
- W2124661962 abstract "In this thesis, we define a static analysis by abstract interpretation of memory manipulations. It is based on a new numerical abstract domain, which is able to infer program invariants involving the operators min and max. This domain relies on tropical polyhedra, which are the analogues of convex polyhedra in tropical algebra. Tropical algebra refers to the set IR U {-oo} endowed with max as addition and + as multiplication. This abstract domain is provided with sound abstract primitives, which allow to automatically compute over-approximations of semantics of programs by means of tropical polyhedra. Thanks to them, we develop and implement a sound static analysis inferring min- and max-invariants over the program variables, the length of the strings, and the size of the arrays in memory. In order to improve the scalability of the abstract domain, we also study the algorithmics of tropical polyhedra. In particular, a tropical polyhedron can be represented in two different ways, either internally, in terms of extreme points and rays, or externally, in terms of tropically affine inequalities. Passing from the external description of a polyhedron to its internal description, or inversely, is a fundamental computational issue, comparable to the well-known vertex/facet enumeration or convex hull problems in the classical algebra. It is also a crucial operation in our numerical abstract domain. For this reason, we develop two original algorithms allowing to pass from an external description of tropical polyhedra to an internal description, and vice versa. They are based on a tropical analogue of the double description method introduced by Motzkin et al. We show that they outperform the other existing methods, both in theory and in practice. The cornerstone of these algorithms is a new combinatorial characterization of extreme elements in tropical polyhedra defined by means of inequalities: we have proved that the extremality of an element amounts to the existence of a strongly connected component reachable from any node in a directed hypergraph. We also show that the latter property can be checked in almost linear time in the size of the hypergraph. Moreover, in order to have a better understanding of the intrinsic complexity of tropical polyhedra, we study the problem of determining the maximal number of extreme points in a tropical polyhedron. In the classical case, this problem is addressed by McMullen upper bound theorem. We prove that the maximal number of extreme points in the tropical case is bounded by a similar result. We introduce a class of tropical polyhedra appearing as natural candidates to be maximizing instances. We establish lower and upper bounds on their number of extreme points, and show that the McMullen type bound is asymptotically tight when the dimension tends to infinity and the number of inequalities defining the polyhedra is fixed. Finally, we experiment our tropical polyhedra based static analyzer on programs manipulating strings and arrays. These experimentations show that the analyzer successfully determines precise properties on memory manipulations, and that it scales up to highly disjunctive invariants which could not be computed by the existing methods. The implementation of all the algorithms and abstract domains on tropical polyhedra developed in this work is available in the Tropical Polyhedra Library (TPLib)." @default.
- W2124661962 created "2016-06-24" @default.
- W2124661962 creator A5089577044 @default.
- W2124661962 date "2009-11-30" @default.
- W2124661962 modified "2023-09-24" @default.
- W2124661962 title "Static analysis of memory manipulations by abstract interpretation -- Algorithmics of tropical polyhedra, and application to abstract interpretation" @default.
- W2124661962 cites W10813651 @default.
- W2124661962 cites W114286715 @default.
- W2124661962 cites W121479631 @default.
- W2124661962 cites W1492171827 @default.
- W2124661962 cites W1499377964 @default.
- W2124661962 cites W1502406167 @default.
- W2124661962 cites W1503701626 @default.
- W2124661962 cites W1507199453 @default.
- W2124661962 cites W1508811155 @default.
- W2124661962 cites W1515687290 @default.
- W2124661962 cites W1515906028 @default.
- W2124661962 cites W1526262508 @default.
- W2124661962 cites W1546862091 @default.
- W2124661962 cites W1563015875 @default.
- W2124661962 cites W1572006999 @default.
- W2124661962 cites W1581254946 @default.
- W2124661962 cites W1584436405 @default.
- W2124661962 cites W1584515386 @default.
- W2124661962 cites W1592336371 @default.
- W2124661962 cites W1592456098 @default.
- W2124661962 cites W1592692579 @default.
- W2124661962 cites W1595093485 @default.
- W2124661962 cites W1597196612 @default.
- W2124661962 cites W1607645463 @default.
- W2124661962 cites W1608164588 @default.
- W2124661962 cites W1609080720 @default.
- W2124661962 cites W1669217010 @default.
- W2124661962 cites W171295454 @default.
- W2124661962 cites W1726736548 @default.
- W2124661962 cites W1774864661 @default.
- W2124661962 cites W1786647412 @default.
- W2124661962 cites W1840408880 @default.
- W2124661962 cites W1889804802 @default.
- W2124661962 cites W1938260438 @default.
- W2124661962 cites W1968208713 @default.
- W2124661962 cites W1972085995 @default.
- W2124661962 cites W1983281982 @default.
- W2124661962 cites W1985111476 @default.
- W2124661962 cites W1989581254 @default.
- W2124661962 cites W198958201 @default.
- W2124661962 cites W199049734 @default.
- W2124661962 cites W1994143452 @default.
- W2124661962 cites W1998285060 @default.
- W2124661962 cites W2000827368 @default.
- W2124661962 cites W2008582047 @default.
- W2124661962 cites W2009288822 @default.
- W2124661962 cites W2010743890 @default.
- W2124661962 cites W2014764321 @default.
- W2124661962 cites W2015362443 @default.
- W2124661962 cites W2020145866 @default.
- W2124661962 cites W2022286645 @default.
- W2124661962 cites W2028660300 @default.
- W2124661962 cites W2028782479 @default.
- W2124661962 cites W2029862101 @default.
- W2124661962 cites W2030697178 @default.
- W2124661962 cites W2030996579 @default.
- W2124661962 cites W2031196367 @default.
- W2124661962 cites W2031373197 @default.
- W2124661962 cites W2043100293 @default.
- W2124661962 cites W2043228814 @default.
- W2124661962 cites W2043541593 @default.
- W2124661962 cites W2044858512 @default.
- W2124661962 cites W2044870852 @default.
- W2124661962 cites W2046213250 @default.
- W2124661962 cites W2047197934 @default.
- W2124661962 cites W2060697066 @default.
- W2124661962 cites W2062873592 @default.
- W2124661962 cites W2069783271 @default.
- W2124661962 cites W2069861393 @default.
- W2124661962 cites W2071501325 @default.
- W2124661962 cites W2071676345 @default.
- W2124661962 cites W2080593426 @default.
- W2124661962 cites W2081810835 @default.
- W2124661962 cites W2082820693 @default.
- W2124661962 cites W2084875723 @default.
- W2124661962 cites W2085201606 @default.
- W2124661962 cites W2088566997 @default.
- W2124661962 cites W2095082073 @default.
- W2124661962 cites W2095179508 @default.
- W2124661962 cites W2100439831 @default.
- W2124661962 cites W2102440514 @default.
- W2124661962 cites W2103228939 @default.
- W2124661962 cites W2107089133 @default.
- W2124661962 cites W2111422217 @default.
- W2124661962 cites W2112660220 @default.
- W2124661962 cites W2117039440 @default.
- W2124661962 cites W2117189826 @default.
- W2124661962 cites W2118229393 @default.
- W2124661962 cites W2118382442 @default.
- W2124661962 cites W2118692759 @default.
- W2124661962 cites W2119648923 @default.
- W2124661962 cites W2123640521 @default.
- W2124661962 cites W2124153277 @default.
- W2124661962 cites W2127470768 @default.