Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124866671> ?p ?o ?g. }
- W2124866671 endingPage "S8" @default.
- W2124866671 startingPage "S8" @default.
- W2124866671 abstract "BackgroundOne of the most challenging tasks in the post-genomic era is to reconstruct the transcriptional regulatory networks. The goal is to reveal, for each gene that responds to a certain biological event, which transcription factors affect its expression, and how a set of transcription factors coordinate to accomplish temporal and spatial specific regulations.ResultsHere we propose a supervised machine learning approach to address these questions. We focus our study on the gene transcriptional regulation of the cell cycle in the budding yeast, thanks to the large amount of data available and relatively well-understood biology, although the main ideas of our method can be applied to other data as well. Our method starts with building an ensemble of decision trees for each microarray data to capture the association between the expression levels of yeast genes and the binding of transcription factors to gene promoter regions, as determined by chromatin immunoprecipitation microarray (ChIP-chip) experiment. Cross-validation experiments show that the method is more accurate and reliable than the naive decision tree algorithm and several other ensemble learning methods. From the decision tree ensembles, we extract logical rules that explain how a set of transcription factors act in concert to regulate the expression of their targets. We further compute a profile for each rule to show its regulation strengths at different time points. We also propose a spline interpolation method to integrate the rule profiles learned from several time series expression data sets that measure the same biological process. We then combine these rule profiles to build a transcriptional regulatory network for the yeast cell cycle. Compared to the results in the literature, our method correctly identifies all major known yeast cell cycle transcription factors, and assigns them into appropriate cell cycle phases. Our method also identifies many interesting synergetic relationships among these transcription factors, most of which are well known, while many of the rest can also be supported by other evidences.ConclusionThe high accuracy of our method indicates that our method is valid and robust. As more gene expression and transcription factor binding data become available, we believe that our method is useful for reconstructing large-scale transcriptional regulatory networks in other species as well." @default.
- W2124866671 created "2016-06-24" @default.
- W2124866671 creator A5042435594 @default.
- W2124866671 creator A5068659777 @default.
- W2124866671 creator A5071995180 @default.
- W2124866671 creator A5075371599 @default.
- W2124866671 date "2009-01-01" @default.
- W2124866671 modified "2023-10-16" @default.
- W2124866671 title "An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data" @default.
- W2124866671 cites W145450961 @default.
- W2124866671 cites W1504694836 @default.
- W2124866671 cites W1534349108 @default.
- W2124866671 cites W1570448133 @default.
- W2124866671 cites W1574715085 @default.
- W2124866671 cites W1592870802 @default.
- W2124866671 cites W1753000577 @default.
- W2124866671 cites W1780185704 @default.
- W2124866671 cites W1964385320 @default.
- W2124866671 cites W1969289662 @default.
- W2124866671 cites W1993886320 @default.
- W2124866671 cites W1998300401 @default.
- W2124866671 cites W2003004599 @default.
- W2124866671 cites W2012091190 @default.
- W2124866671 cites W2025868820 @default.
- W2124866671 cites W2032231928 @default.
- W2124866671 cites W2046355391 @default.
- W2124866671 cites W2073506826 @default.
- W2124866671 cites W2073727170 @default.
- W2124866671 cites W2084908610 @default.
- W2124866671 cites W2090592322 @default.
- W2124866671 cites W2096139934 @default.
- W2124866671 cites W2103453943 @default.
- W2124866671 cites W2108420379 @default.
- W2124866671 cites W2112076978 @default.
- W2124866671 cites W2123504579 @default.
- W2124866671 cites W2124491835 @default.
- W2124866671 cites W2125055259 @default.
- W2124866671 cites W2125508747 @default.
- W2124866671 cites W2126502410 @default.
- W2124866671 cites W2126602684 @default.
- W2124866671 cites W2128150566 @default.
- W2124866671 cites W2131095163 @default.
- W2124866671 cites W2134371225 @default.
- W2124866671 cites W2135000328 @default.
- W2124866671 cites W2135187880 @default.
- W2124866671 cites W2137419493 @default.
- W2124866671 cites W2137646016 @default.
- W2124866671 cites W2138717237 @default.
- W2124866671 cites W2139947030 @default.
- W2124866671 cites W2142446963 @default.
- W2124866671 cites W2142460132 @default.
- W2124866671 cites W2142657835 @default.
- W2124866671 cites W2144036800 @default.
- W2124866671 cites W2144710927 @default.
- W2124866671 cites W2150926065 @default.
- W2124866671 cites W2152761983 @default.
- W2124866671 cites W2153800196 @default.
- W2124866671 cites W2161477969 @default.
- W2124866671 cites W2164777277 @default.
- W2124866671 cites W2166103265 @default.
- W2124866671 cites W2167190345 @default.
- W2124866671 cites W2171099728 @default.
- W2124866671 cites W2912934387 @default.
- W2124866671 doi "https://doi.org/10.1186/1471-2164-10-s1-s8" @default.
- W2124866671 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2709269" @default.
- W2124866671 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19594885" @default.
- W2124866671 hasPublicationYear "2009" @default.
- W2124866671 type Work @default.
- W2124866671 sameAs 2124866671 @default.
- W2124866671 citedByCount "9" @default.
- W2124866671 countsByYear W21248666712012 @default.
- W2124866671 countsByYear W21248666712013 @default.
- W2124866671 crossrefType "journal-article" @default.
- W2124866671 hasAuthorship W2124866671A5042435594 @default.
- W2124866671 hasAuthorship W2124866671A5068659777 @default.
- W2124866671 hasAuthorship W2124866671A5071995180 @default.
- W2124866671 hasAuthorship W2124866671A5075371599 @default.
- W2124866671 hasBestOaLocation W21248666711 @default.
- W2124866671 hasConcept C101762097 @default.
- W2124866671 hasConcept C104317684 @default.
- W2124866671 hasConcept C119857082 @default.
- W2124866671 hasConcept C124101348 @default.
- W2124866671 hasConcept C134320426 @default.
- W2124866671 hasConcept C150194340 @default.
- W2124866671 hasConcept C152662350 @default.
- W2124866671 hasConcept C154945302 @default.
- W2124866671 hasConcept C165864922 @default.
- W2124866671 hasConcept C27153228 @default.
- W2124866671 hasConcept C41008148 @default.
- W2124866671 hasConcept C45942800 @default.
- W2124866671 hasConcept C54355233 @default.
- W2124866671 hasConcept C67339327 @default.
- W2124866671 hasConcept C70721500 @default.
- W2124866671 hasConcept C8415881 @default.
- W2124866671 hasConcept C84525736 @default.
- W2124866671 hasConcept C86339819 @default.
- W2124866671 hasConcept C86803240 @default.
- W2124866671 hasConcept C95371953 @default.