Matches in SemOpenAlex for { <https://semopenalex.org/work/W2124992081> ?p ?o ?g. }
- W2124992081 abstract "In the past two decades there have been several projects on Spoken Language Understanding (SLU). In the early nineties DARPA ATIS project aimed at providing a natural language interface to a travel information database. Following the ATIS project, DARPA Communicator project aimed at building a spoken dialog system automatically providing information on flights and travel reservation. These two projects defined a first generation of conversational systems. In late nineties ``How may I help you'' project from AT&T, with Large Vocabulary Continuous Speech Recognition (LVCSR) and mixed initiatives spoken interfaces, started the second generation of conversational systems, which later have been improved integrating approaches based on machine learning techniques.The European funded project LUNA aims at starting the third generation of spoken language interfaces. In the context of this project we have acquired the first Italian corpus of spontaneous speech from real users engaged in a problem solving task, as opposed to previous projects. The corpus contains transcriptions and annotations based on a new multilevel protocol studied specifically for the goal of the LUNA project.The task of Spoken Language Understanding is the extraction of the meaning structure from spoken utterances in conversational systems. For this purpose, two main statistical learning paradigms have been proposed in the last decades: generative and discriminative models.The former are robust to over-fitting and they are less affected by noise but they cannot easily integrate complex structures (e.g. trees). In contrast, the latter can easily integrate very complex features that can capture arbitrarily long distance dependencies. On the other hand they tend to over-fit training data and so they are less robust to annotation errors in the data needed to learn the model.This work presents an exhaustive study of Spoken Language Understanding models, putting particular focus on structural features used in a Joint Generative and Discriminative learning framework. This combines the strengths of both approaches while training segmentation and labeling models for SLU. Its main characteristic is the use of Kernel Methods to encode structured features in Support Vector Machines, which in turn re-rank the hypotheses produced by an first step SLU module based either on Stochastic Finite State Transducers or Conditional Random Fields. Joint models based on transducers are also amenable to decode word lattices generated by large vocabulary speech recognizers.We show the benefit of our approach with comparative experiments among generative, discriminative and joint models on some of the most representative corpora of SLU, for a total of four corpora in four different languages: the ATIS corpus (English), the MEDIA corpus (French) and the LUNA Italian and Polish corpora (Italian and Polish respectively). These also represent three different kinds of domain applications, i.e. informational, transactional and problem-solving domains.The results, although depending on the task and in some range on the first model baseline, show that joint models improve in most cases the state-of-the-art, especially when a small training set is available." @default.
- W2124992081 created "2016-06-24" @default.
- W2124992081 creator A5050707731 @default.
- W2124992081 date "2010-03-29" @default.
- W2124992081 modified "2023-09-26" @default.
- W2124992081 title "Spoken Language Understanding: From Spoken Utterances to Semantic Structures" @default.
- W2124992081 cites W147719339 @default.
- W2124992081 cites W149113674 @default.
- W2124992081 cites W1495086638 @default.
- W2124992081 cites W1510073064 @default.
- W2124992081 cites W1559147707 @default.
- W2124992081 cites W1574458667 @default.
- W2124992081 cites W1587871245 @default.
- W2124992081 cites W159451820 @default.
- W2124992081 cites W1631260214 @default.
- W2124992081 cites W165283731 @default.
- W2124992081 cites W169943709 @default.
- W2124992081 cites W175821084 @default.
- W2124992081 cites W179314280 @default.
- W2124992081 cites W1904457459 @default.
- W2124992081 cites W191496698 @default.
- W2124992081 cites W1936920915 @default.
- W2124992081 cites W1967200687 @default.
- W2124992081 cites W1978620866 @default.
- W2124992081 cites W1987486061 @default.
- W2124992081 cites W1988995507 @default.
- W2124992081 cites W1990549830 @default.
- W2124992081 cites W1994383019 @default.
- W2124992081 cites W1996430422 @default.
- W2124992081 cites W2000900121 @default.
- W2124992081 cites W2001292828 @default.
- W2124992081 cites W2005267654 @default.
- W2124992081 cites W2028486550 @default.
- W2124992081 cites W2034264652 @default.
- W2124992081 cites W2039387658 @default.
- W2124992081 cites W2046932483 @default.
- W2124992081 cites W2047237057 @default.
- W2124992081 cites W205010892 @default.
- W2124992081 cites W2050751769 @default.
- W2124992081 cites W2051319605 @default.
- W2124992081 cites W2051871732 @default.
- W2124992081 cites W2053463056 @default.
- W2124992081 cites W2056250865 @default.
- W2124992081 cites W2056983531 @default.
- W2124992081 cites W2059665801 @default.
- W2124992081 cites W2080922525 @default.
- W2124992081 cites W2081605912 @default.
- W2124992081 cites W2099684468 @default.
- W2124992081 cites W2101308260 @default.
- W2124992081 cites W2104917172 @default.
- W2124992081 cites W2109224389 @default.
- W2124992081 cites W2109933326 @default.
- W2124992081 cites W2110433488 @default.
- W2124992081 cites W2112706073 @default.
- W2124992081 cites W2115792525 @default.
- W2124992081 cites W2116461436 @default.
- W2124992081 cites W2120814856 @default.
- W2124992081 cites W2121127625 @default.
- W2124992081 cites W2121889065 @default.
- W2124992081 cites W2125838338 @default.
- W2124992081 cites W2126851059 @default.
- W2124992081 cites W2127713198 @default.
- W2124992081 cites W2129577276 @default.
- W2124992081 cites W2129665406 @default.
- W2124992081 cites W2131297983 @default.
- W2124992081 cites W2132403634 @default.
- W2124992081 cites W2134199742 @default.
- W2124992081 cites W2135320949 @default.
- W2124992081 cites W2144087279 @default.
- W2124992081 cites W2147880316 @default.
- W2124992081 cites W2148514624 @default.
- W2124992081 cites W2148603752 @default.
- W2124992081 cites W2149346550 @default.
- W2124992081 cites W2150203234 @default.
- W2124992081 cites W21503661 @default.
- W2124992081 cites W2155287833 @default.
- W2124992081 cites W2156182230 @default.
- W2124992081 cites W2158195707 @default.
- W2124992081 cites W2158847908 @default.
- W2124992081 cites W2159859968 @default.
- W2124992081 cites W2161446215 @default.
- W2124992081 cites W2163219052 @default.
- W2124992081 cites W2166293310 @default.
- W2124992081 cites W2170750237 @default.
- W2124992081 cites W2171144711 @default.
- W2124992081 cites W2249819665 @default.
- W2124992081 cites W2492291064 @default.
- W2124992081 cites W3021452258 @default.
- W2124992081 cites W35651078 @default.
- W2124992081 cites W38734189 @default.
- W2124992081 cites W596234542 @default.
- W2124992081 cites W87145856 @default.
- W2124992081 cites W94225560 @default.
- W2124992081 hasPublicationYear "2010" @default.
- W2124992081 type Work @default.
- W2124992081 sameAs 2124992081 @default.
- W2124992081 citedByCount "1" @default.
- W2124992081 countsByYear W21249920812019 @default.
- W2124992081 crossrefType "dissertation" @default.
- W2124992081 hasAuthorship W2124992081A5050707731 @default.