Matches in SemOpenAlex for { <https://semopenalex.org/work/W2125003829> ?p ?o ?g. }
- W2125003829 endingPage "809" @default.
- W2125003829 startingPage "796" @default.
- W2125003829 abstract "Recently, manifold learning has been widely exploited in pattern recognition, data analysis, and machine learning. This paper presents a novel framework, called Riemannian manifold learning (RML), based on the assumption that the input high-dimensional data lie on an intrinsically low-dimensional Riemannian manifold. The main idea is to formulate the dimensionality reduction problem as a classical problem in Riemannian geometry, that is, how to construct coordinate charts for a given Riemannian manifold? We implement the Riemannian normal coordinate chart, which has been the most widely used in Riemannian geometry, for a set of unorganized data points. First, two input parameters (the neighborhood size k and the intrinsic dimension d) are estimated based on an efficient simplicial reconstruction of the underlying manifold. Then, the normal coordinates are computed to map the input high-dimensional data into a low- dimensional space. Experiments on synthetic data, as well as real-world images, demonstrate that our algorithm can learn intrinsic geometric structures of the data, preserve radial geodesic distances, and yield regular embeddings." @default.
- W2125003829 created "2016-06-24" @default.
- W2125003829 creator A5017031914 @default.
- W2125003829 creator A5040989553 @default.
- W2125003829 date "2008-05-01" @default.
- W2125003829 modified "2023-09-30" @default.
- W2125003829 title "Riemannian Manifold Learning" @default.
- W2125003829 cites W1578196132 @default.
- W2125003829 cites W1578316706 @default.
- W2125003829 cites W1974393980 @default.
- W2125003829 cites W2001141328 @default.
- W2125003829 cites W2028569884 @default.
- W2125003829 cites W2030876210 @default.
- W2125003829 cites W2035990705 @default.
- W2125003829 cites W2053186076 @default.
- W2125003829 cites W2077776048 @default.
- W2125003829 cites W2078626246 @default.
- W2125003829 cites W2090857812 @default.
- W2125003829 cites W2093402979 @default.
- W2125003829 cites W2097308346 @default.
- W2125003829 cites W2106754084 @default.
- W2125003829 cites W2107636931 @default.
- W2125003829 cites W2113957760 @default.
- W2125003829 cites W2115845039 @default.
- W2125003829 cites W2116402476 @default.
- W2125003829 cites W2116810533 @default.
- W2125003829 cites W2117553576 @default.
- W2125003829 cites W2117684310 @default.
- W2125003829 cites W2124812588 @default.
- W2125003829 cites W2133532973 @default.
- W2125003829 cites W2138451337 @default.
- W2125003829 cites W2155161883 @default.
- W2125003829 cites W2156761667 @default.
- W2125003829 cites W2156838815 @default.
- W2125003829 cites W2157191463 @default.
- W2125003829 cites W2164071167 @default.
- W2125003829 cites W2277948366 @default.
- W2125003829 cites W3013880646 @default.
- W2125003829 cites W4210919084 @default.
- W2125003829 cites W4213367101 @default.
- W2125003829 cites W4245176872 @default.
- W2125003829 cites W4246954948 @default.
- W2125003829 cites W4300928735 @default.
- W2125003829 doi "https://doi.org/10.1109/tpami.2007.70735" @default.
- W2125003829 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18369250" @default.
- W2125003829 hasPublicationYear "2008" @default.
- W2125003829 type Work @default.
- W2125003829 sameAs 2125003829 @default.
- W2125003829 citedByCount "374" @default.
- W2125003829 countsByYear W21250038292012 @default.
- W2125003829 countsByYear W21250038292013 @default.
- W2125003829 countsByYear W21250038292014 @default.
- W2125003829 countsByYear W21250038292015 @default.
- W2125003829 countsByYear W21250038292016 @default.
- W2125003829 countsByYear W21250038292017 @default.
- W2125003829 countsByYear W21250038292018 @default.
- W2125003829 countsByYear W21250038292019 @default.
- W2125003829 countsByYear W21250038292020 @default.
- W2125003829 countsByYear W21250038292021 @default.
- W2125003829 countsByYear W21250038292022 @default.
- W2125003829 countsByYear W21250038292023 @default.
- W2125003829 crossrefType "journal-article" @default.
- W2125003829 hasAuthorship W2125003829A5017031914 @default.
- W2125003829 hasAuthorship W2125003829A5040989553 @default.
- W2125003829 hasConcept C102224218 @default.
- W2125003829 hasConcept C109546454 @default.
- W2125003829 hasConcept C111030470 @default.
- W2125003829 hasConcept C114614502 @default.
- W2125003829 hasConcept C12089564 @default.
- W2125003829 hasConcept C121705324 @default.
- W2125003829 hasConcept C12520029 @default.
- W2125003829 hasConcept C127413603 @default.
- W2125003829 hasConcept C134306372 @default.
- W2125003829 hasConcept C1432948 @default.
- W2125003829 hasConcept C151876577 @default.
- W2125003829 hasConcept C154945302 @default.
- W2125003829 hasConcept C165818556 @default.
- W2125003829 hasConcept C169391604 @default.
- W2125003829 hasConcept C181104567 @default.
- W2125003829 hasConcept C184720557 @default.
- W2125003829 hasConcept C195065555 @default.
- W2125003829 hasConcept C202444582 @default.
- W2125003829 hasConcept C2524010 @default.
- W2125003829 hasConcept C2779593128 @default.
- W2125003829 hasConcept C30732413 @default.
- W2125003829 hasConcept C33676613 @default.
- W2125003829 hasConcept C33923547 @default.
- W2125003829 hasConcept C41008148 @default.
- W2125003829 hasConcept C42448751 @default.
- W2125003829 hasConcept C529865628 @default.
- W2125003829 hasConcept C70518039 @default.
- W2125003829 hasConcept C78519656 @default.
- W2125003829 hasConceptScore W2125003829C102224218 @default.
- W2125003829 hasConceptScore W2125003829C109546454 @default.
- W2125003829 hasConceptScore W2125003829C111030470 @default.
- W2125003829 hasConceptScore W2125003829C114614502 @default.
- W2125003829 hasConceptScore W2125003829C12089564 @default.
- W2125003829 hasConceptScore W2125003829C121705324 @default.