Matches in SemOpenAlex for { <https://semopenalex.org/work/W2125294030> ?p ?o ?g. }
- W2125294030 endingPage "858" @default.
- W2125294030 startingPage "848" @default.
- W2125294030 abstract "A major task for biological nomenclature and taxonomy is to provide names and tools for communication about biodiversity. This is even more important in times of bioinformatics where scientists often search GenBank and other databases for phylogenetic information. Comparative studies on a large number of unrelated taxa by scientists that are not taxonomic specialists are likely to become even more common in the future. Hence, a nomenclatural system that helps scientists to unequivocally find information about a particular taxon has high priority. One step towards achieving such a system is the phylogenetic system of nomenclature (PSN) initially developed by de Queiroz and Gauthier (1990, 1992). The PSN differs from traditional rank-based nomenclature (RSN) in that it avoids the connection of a name to a particular taxonomic rank and type. And perhaps more importantly, PSN utilizes more than one reference point (i.e., specifiers) for each name. A major advantage with two specifiers (instead of one type) is that given the specifiers and a phylogenetic tree (including the specifiers), it is rather straightforward to find out the extension of the taxon in question. This is much more difficult within an RSN because the extension of a taxon name is not spelled out in a formal definition. Thus, the PSN seems ideal to provide taxonomic information to users in an explicit and unequivocal way. This is indeed an important task for nomenclature and taxonomy in the future. Nevertheless, the merits of PSN, as compared to RSN, are still controversial and much debated in systematics. Much of this debate concerns what is meant by a name and the importance of taxonomic stability. While proponents of RSN often highlight the importance of taxonomic content, proponents of PSN instead highlight the importance of common ancestry (Bryant and Cantino, 2002). Taxonomic stability, also referred to as stability in content (Lee, 1996) and circumscriptional stability (Moore, 1998), corresponds to the stability in the extension of names and is measured in terms of all taxa included in a group referred to by a name; taxa missing in each application of a name compromises this stability (Nixon and Carpenter, 2000). Related to the issue of stability is the importance for a taxonomic name to be applicable in a wide range of biological contexts; i.e., to have high universality. In phylogenetic nomenclature high universality for a phylogenetic name (hereafter referred to as phylonames) should mean that it could be used in a wide range of phylogenetic analyses and trees. And, as a corollary, high universality of a name also implies that all biologists should use the same name for the same taxon (de Queiroz, 1997; see also Harlin, 2003, 2005). Although initially agnostic on the issue on taxon content, proponents of PSN have lately come up with methods to stabilize taxonomic content when the choice of phylogenetic hypotheses shift. One such method is to increase the number of specifiers used in a taxon name definition. In the present paper we argue that there is a trade-off between stability and universality in terms of number of specifiers. That is, the current trend in PSN to emphasize stability in content by increasing the number of specifiers in phylogenetic definitions is actually limiting the communication efficiency of phylonames. Thus, even if this practice may increase taxon content stability, it tends to compromise the universality in the application of these names. And the effect may be that we lose the advantage gained by introducing PSN as a replacement for RSN in the first place." @default.
- W2125294030 created "2016-06-24" @default.
- W2125294030 creator A5048371360 @default.
- W2125294030 creator A5051661381 @default.
- W2125294030 date "2006-10-01" @default.
- W2125294030 modified "2023-10-06" @default.
- W2125294030 title "Stability and Universality in the Application of Taxon Names in Phylogenetic Nomenclature" @default.
- W2125294030 cites W1576374759 @default.
- W2125294030 cites W1964807613 @default.
- W2125294030 cites W1965188961 @default.
- W2125294030 cites W1965522209 @default.
- W2125294030 cites W1971114304 @default.
- W2125294030 cites W1980502272 @default.
- W2125294030 cites W1984911158 @default.
- W2125294030 cites W1988502721 @default.
- W2125294030 cites W1994586112 @default.
- W2125294030 cites W1998745130 @default.
- W2125294030 cites W2000153977 @default.
- W2125294030 cites W2003359252 @default.
- W2125294030 cites W2003529280 @default.
- W2125294030 cites W2004477458 @default.
- W2125294030 cites W2005333756 @default.
- W2125294030 cites W2022492894 @default.
- W2125294030 cites W2026182599 @default.
- W2125294030 cites W2032121707 @default.
- W2125294030 cites W2032710789 @default.
- W2125294030 cites W2043818469 @default.
- W2125294030 cites W2046948550 @default.
- W2125294030 cites W2050139656 @default.
- W2125294030 cites W2050149305 @default.
- W2125294030 cites W2052924314 @default.
- W2125294030 cites W2055033017 @default.
- W2125294030 cites W2063810735 @default.
- W2125294030 cites W2064376895 @default.
- W2125294030 cites W2078445915 @default.
- W2125294030 cites W2079756896 @default.
- W2125294030 cites W2082952845 @default.
- W2125294030 cites W2083972301 @default.
- W2125294030 cites W2088138371 @default.
- W2125294030 cites W2088688477 @default.
- W2125294030 cites W2095918749 @default.
- W2125294030 cites W2097409539 @default.
- W2125294030 cites W2100466342 @default.
- W2125294030 cites W2102729524 @default.
- W2125294030 cites W2111782837 @default.
- W2125294030 cites W2113180030 @default.
- W2125294030 cites W2116104082 @default.
- W2125294030 cites W2121031207 @default.
- W2125294030 cites W2121198510 @default.
- W2125294030 cites W2124086049 @default.
- W2125294030 cites W2126759308 @default.
- W2125294030 cites W2128355222 @default.
- W2125294030 cites W2128909230 @default.
- W2125294030 cites W2145276470 @default.
- W2125294030 cites W2145571010 @default.
- W2125294030 cites W2146034172 @default.
- W2125294030 cites W2148347434 @default.
- W2125294030 cites W2148515583 @default.
- W2125294030 cites W2151378996 @default.
- W2125294030 cites W2159866229 @default.
- W2125294030 cites W2161909415 @default.
- W2125294030 cites W2168135047 @default.
- W2125294030 cites W2168817846 @default.
- W2125294030 cites W2170835261 @default.
- W2125294030 cites W2176794016 @default.
- W2125294030 cites W2176924069 @default.
- W2125294030 cites W2178484676 @default.
- W2125294030 cites W2180890828 @default.
- W2125294030 cites W2186149986 @default.
- W2125294030 cites W2321477660 @default.
- W2125294030 cites W2325520517 @default.
- W2125294030 cites W2328208777 @default.
- W2125294030 cites W2329991471 @default.
- W2125294030 cites W2330703407 @default.
- W2125294030 cites W2396221048 @default.
- W2125294030 cites W2575332984 @default.
- W2125294030 cites W4237753771 @default.
- W2125294030 cites W4244729043 @default.
- W2125294030 cites W4249194631 @default.
- W2125294030 cites W4253039493 @default.
- W2125294030 cites W66022270 @default.
- W2125294030 doi "https://doi.org/10.1080/10635150600960061" @default.
- W2125294030 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17060205" @default.
- W2125294030 hasPublicationYear "2006" @default.
- W2125294030 type Work @default.
- W2125294030 sameAs 2125294030 @default.
- W2125294030 citedByCount "8" @default.
- W2125294030 countsByYear W21252940302017 @default.
- W2125294030 countsByYear W21252940302019 @default.
- W2125294030 crossrefType "journal-article" @default.
- W2125294030 hasAuthorship W2125294030A5048371360 @default.
- W2125294030 hasAuthorship W2125294030A5051661381 @default.
- W2125294030 hasBestOaLocation W21252940301 @default.
- W2125294030 hasConcept C104317684 @default.
- W2125294030 hasConcept C121332964 @default.
- W2125294030 hasConcept C151730666 @default.
- W2125294030 hasConcept C183992945 @default.
- W2125294030 hasConcept C193252679 @default.