Matches in SemOpenAlex for { <https://semopenalex.org/work/W2125324510> ?p ?o ?g. }
- W2125324510 abstract "Granular materials are ubiquitous. They are widely used in many natural and man-made processes such as formation of lunar regolith, dunes and beach sand, as well as processes in pharmaceutical, chemical, and construction industries. Despite their clear industrial relevance, a fundamental understanding of most of the phenomena that involve granular materials in the chemical industry is lacking. Recently, it has been found that cyclic variation of the temperature of a granular bed can cause static particle beds to consolidate (increase their packing fraction) over time due to thermo-mechanical coupling. We employ experimental techniques and numerical simulations, using the thermal particle dynamics method (TPD), to study this phenomenon. In order to simulate many natural phenomena such as lunar regolith formation, one needs to determine a simulation depth of the bed which will yield realistic results yet be manageable computationally. Here we use penetration theory to estimate the required simulation bed height. Lateral periodic boundary conditions are used in our simulations to show that consolidation still occurs during vertical heating even in the absence of confining side walls.Granular flows in which shearing plays a key role are prevalent in natural and industrial applications and understanding their behavior and flow characteristics is of considerable importance. Nevertheless, difficulties in making accurate experimental measurements, complexities involved in doing bulk characterization, and the non-linear nature of interparticle interactions have made development and testing of theoretical models extremely challenging. For this reason, the discrete element method (DEM) is often used as the gold standard for comparison to continuum-level theories of granular material flows. Due to the fact that this modeling approach is derived from first-principle constructs -- like contact mechanics -- its use in lieu of experimentation is reasonably wide-spread and is becoming a staple even in industrial practice. In this work, we explore various aspects of quantitative validation of DEM simulations using detailed measurements of simple, well-characterized flows that allow us to examine the effect of rough surfaces, rotational rates, collisional and frictional force models on granular flow using different devices. Experimentally, we use digital particle tracking velocimetry (DPTV) to obtain velocity, solids fractions, and granular temperature profiles. Computationally, we compare the results obtained using different contact mechanics force laws to those from experimental measurements and perform sensitivity analyses on device and particle geometry as well as material properties employed. In general, the frictional force models range from pragmatic linear techniques to rigorously more complex (nonlinear) contact mechanics inspired routines. Here, we examine both force models to compare with the experimental measurements. In addition, we examine the robustness of these observations to both particle materials properties as well as systemic variables (such as total system solids fraction)." @default.
- W2125324510 created "2016-06-24" @default.
- W2125324510 creator A5037762018 @default.
- W2125324510 date "2012-09-26" @default.
- W2125324510 modified "2023-09-27" @default.
- W2125324510 title "MODELING OF CONSOLIDATION AND FLOW OF GRANULAR MATERIAL UNDER VARYING CONDITIONS" @default.
- W2125324510 cites W144152693 @default.
- W2125324510 cites W1509114612 @default.
- W2125324510 cites W1540985309 @default.
- W2125324510 cites W158676009 @default.
- W2125324510 cites W1593339197 @default.
- W2125324510 cites W1665047674 @default.
- W2125324510 cites W1968056105 @default.
- W2125324510 cites W1969195580 @default.
- W2125324510 cites W1971523745 @default.
- W2125324510 cites W1972253980 @default.
- W2125324510 cites W1973728389 @default.
- W2125324510 cites W1974496232 @default.
- W2125324510 cites W1975331496 @default.
- W2125324510 cites W1975933839 @default.
- W2125324510 cites W1976984910 @default.
- W2125324510 cites W1977895691 @default.
- W2125324510 cites W1978566203 @default.
- W2125324510 cites W1979667129 @default.
- W2125324510 cites W1980144709 @default.
- W2125324510 cites W1980284489 @default.
- W2125324510 cites W1982343990 @default.
- W2125324510 cites W1983648959 @default.
- W2125324510 cites W1985396918 @default.
- W2125324510 cites W1985462977 @default.
- W2125324510 cites W1985987507 @default.
- W2125324510 cites W1986103411 @default.
- W2125324510 cites W1986937620 @default.
- W2125324510 cites W1987529349 @default.
- W2125324510 cites W1988000552 @default.
- W2125324510 cites W1989182349 @default.
- W2125324510 cites W1990910413 @default.
- W2125324510 cites W1990974655 @default.
- W2125324510 cites W1992227786 @default.
- W2125324510 cites W1993644547 @default.
- W2125324510 cites W1994033212 @default.
- W2125324510 cites W1994310341 @default.
- W2125324510 cites W1994713690 @default.
- W2125324510 cites W1994902711 @default.
- W2125324510 cites W1995434037 @default.
- W2125324510 cites W1995872576 @default.
- W2125324510 cites W1998208348 @default.
- W2125324510 cites W1998922689 @default.
- W2125324510 cites W1999958685 @default.
- W2125324510 cites W2001263565 @default.
- W2125324510 cites W2003568319 @default.
- W2125324510 cites W2003895653 @default.
- W2125324510 cites W2004188898 @default.
- W2125324510 cites W2004357282 @default.
- W2125324510 cites W2006119447 @default.
- W2125324510 cites W2006422517 @default.
- W2125324510 cites W2007041161 @default.
- W2125324510 cites W2008856905 @default.
- W2125324510 cites W2009009769 @default.
- W2125324510 cites W2010463998 @default.
- W2125324510 cites W2010574799 @default.
- W2125324510 cites W2012629131 @default.
- W2125324510 cites W2013027697 @default.
- W2125324510 cites W2013437060 @default.
- W2125324510 cites W2014610650 @default.
- W2125324510 cites W2017320221 @default.
- W2125324510 cites W2017524521 @default.
- W2125324510 cites W2019686554 @default.
- W2125324510 cites W2019982043 @default.
- W2125324510 cites W2021396365 @default.
- W2125324510 cites W2021544026 @default.
- W2125324510 cites W2022414003 @default.
- W2125324510 cites W2024373639 @default.
- W2125324510 cites W2025422771 @default.
- W2125324510 cites W2027132470 @default.
- W2125324510 cites W2027543751 @default.
- W2125324510 cites W2029102835 @default.
- W2125324510 cites W2029314393 @default.
- W2125324510 cites W2030719076 @default.
- W2125324510 cites W2030886810 @default.
- W2125324510 cites W2032213317 @default.
- W2125324510 cites W2032449465 @default.
- W2125324510 cites W2032519080 @default.
- W2125324510 cites W2033235580 @default.
- W2125324510 cites W2033838231 @default.
- W2125324510 cites W2038722207 @default.
- W2125324510 cites W2040324544 @default.
- W2125324510 cites W2040797970 @default.
- W2125324510 cites W2041726789 @default.
- W2125324510 cites W2041902442 @default.
- W2125324510 cites W2042056890 @default.
- W2125324510 cites W2044335713 @default.
- W2125324510 cites W2045470585 @default.
- W2125324510 cites W2045815910 @default.
- W2125324510 cites W2047747151 @default.
- W2125324510 cites W2048855891 @default.
- W2125324510 cites W2050432695 @default.
- W2125324510 cites W2050921466 @default.
- W2125324510 cites W2054065338 @default.
- W2125324510 cites W2056207402 @default.