Matches in SemOpenAlex for { <https://semopenalex.org/work/W2125432874> ?p ?o ?g. }
- W2125432874 endingPage "358" @default.
- W2125432874 startingPage "347" @default.
- W2125432874 abstract "Variable selection techniques for the classical linear regression model have been widely investigated. Variable selection in fully nonparametric and additive regression models has been studied more recently. A Bayesian approach for nonparametric additive regression models is considered, where the functions in the additive model are expanded in a B-spline basis and a multivariate Laplace prior is put on the coefficients. Posterior probabilities of models defined by selection of predictors in the working model are computed, using a Laplace approximation method. The prior times the likelihood is expanded around the posterior mode, which can be identified with the group LASSO, for which a fast computing algorithm exists. Thus Markov chain Monte-Carlo or any other time consuming sampling based methods are completely avoided, leading to quick assessment of various posterior model probabilities. This technique is applied to the high-dimensional situation where the number of parameters exceeds the number of observations." @default.
- W2125432874 created "2016-06-24" @default.
- W2125432874 creator A5011476402 @default.
- W2125432874 creator A5055067332 @default.
- W2125432874 creator A5077688271 @default.
- W2125432874 date "2014-03-01" @default.
- W2125432874 modified "2023-09-23" @default.
- W2125432874 title "Fast Bayesian model assessment for nonparametric additive regression" @default.
- W2125432874 cites W1977715424 @default.
- W2125432874 cites W2006988935 @default.
- W2125432874 cites W2007069447 @default.
- W2125432874 cites W2012653948 @default.
- W2125432874 cites W2016979665 @default.
- W2125432874 cites W2020082788 @default.
- W2125432874 cites W2020925091 @default.
- W2125432874 cites W2021436645 @default.
- W2125432874 cites W2034235328 @default.
- W2125432874 cites W2035844373 @default.
- W2125432874 cites W2044107635 @default.
- W2125432874 cites W2056324615 @default.
- W2125432874 cites W2059757108 @default.
- W2125432874 cites W2061883449 @default.
- W2125432874 cites W2063978378 @default.
- W2125432874 cites W2064257851 @default.
- W2125432874 cites W2065274576 @default.
- W2125432874 cites W2074682976 @default.
- W2125432874 cites W2080726496 @default.
- W2125432874 cites W2084803500 @default.
- W2125432874 cites W2093994886 @default.
- W2125432874 cites W2102201073 @default.
- W2125432874 cites W2122825543 @default.
- W2125432874 cites W2138019504 @default.
- W2125432874 cites W2142635246 @default.
- W2125432874 cites W2154180625 @default.
- W2125432874 cites W2162430620 @default.
- W2125432874 cites W2168175751 @default.
- W2125432874 cites W2593996946 @default.
- W2125432874 cites W3099516248 @default.
- W2125432874 cites W3102998992 @default.
- W2125432874 cites W4238943743 @default.
- W2125432874 doi "https://doi.org/10.1016/j.csda.2013.05.012" @default.
- W2125432874 hasPublicationYear "2014" @default.
- W2125432874 type Work @default.
- W2125432874 sameAs 2125432874 @default.
- W2125432874 citedByCount "21" @default.
- W2125432874 countsByYear W21254328742013 @default.
- W2125432874 countsByYear W21254328742014 @default.
- W2125432874 countsByYear W21254328742015 @default.
- W2125432874 countsByYear W21254328742016 @default.
- W2125432874 countsByYear W21254328742017 @default.
- W2125432874 countsByYear W21254328742019 @default.
- W2125432874 countsByYear W21254328742020 @default.
- W2125432874 countsByYear W21254328742021 @default.
- W2125432874 countsByYear W21254328742023 @default.
- W2125432874 crossrefType "journal-article" @default.
- W2125432874 hasAuthorship W2125432874A5011476402 @default.
- W2125432874 hasAuthorship W2125432874A5055067332 @default.
- W2125432874 hasAuthorship W2125432874A5077688271 @default.
- W2125432874 hasBestOaLocation W21254328742 @default.
- W2125432874 hasConcept C102366305 @default.
- W2125432874 hasConcept C105795698 @default.
- W2125432874 hasConcept C107673813 @default.
- W2125432874 hasConcept C111350023 @default.
- W2125432874 hasConcept C136764020 @default.
- W2125432874 hasConcept C152877465 @default.
- W2125432874 hasConcept C160234255 @default.
- W2125432874 hasConcept C203223496 @default.
- W2125432874 hasConcept C22243797 @default.
- W2125432874 hasConcept C33923547 @default.
- W2125432874 hasConcept C37616216 @default.
- W2125432874 hasConcept C37903108 @default.
- W2125432874 hasConcept C41008148 @default.
- W2125432874 hasConcept C57830394 @default.
- W2125432874 hasConcept C64946054 @default.
- W2125432874 hasConcept C74127309 @default.
- W2125432874 hasConcept C93959086 @default.
- W2125432874 hasConceptScore W2125432874C102366305 @default.
- W2125432874 hasConceptScore W2125432874C105795698 @default.
- W2125432874 hasConceptScore W2125432874C107673813 @default.
- W2125432874 hasConceptScore W2125432874C111350023 @default.
- W2125432874 hasConceptScore W2125432874C136764020 @default.
- W2125432874 hasConceptScore W2125432874C152877465 @default.
- W2125432874 hasConceptScore W2125432874C160234255 @default.
- W2125432874 hasConceptScore W2125432874C203223496 @default.
- W2125432874 hasConceptScore W2125432874C22243797 @default.
- W2125432874 hasConceptScore W2125432874C33923547 @default.
- W2125432874 hasConceptScore W2125432874C37616216 @default.
- W2125432874 hasConceptScore W2125432874C37903108 @default.
- W2125432874 hasConceptScore W2125432874C41008148 @default.
- W2125432874 hasConceptScore W2125432874C57830394 @default.
- W2125432874 hasConceptScore W2125432874C64946054 @default.
- W2125432874 hasConceptScore W2125432874C74127309 @default.
- W2125432874 hasConceptScore W2125432874C93959086 @default.
- W2125432874 hasLocation W21254328741 @default.
- W2125432874 hasLocation W21254328742 @default.
- W2125432874 hasOpenAccess W2125432874 @default.
- W2125432874 hasPrimaryLocation W21254328741 @default.
- W2125432874 hasRelatedWork W2064897621 @default.