Matches in SemOpenAlex for { <https://semopenalex.org/work/W2125520565> ?p ?o ?g. }
- W2125520565 endingPage "645" @default.
- W2125520565 startingPage "636" @default.
- W2125520565 abstract "An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery." @default.
- W2125520565 created "2016-06-24" @default.
- W2125520565 creator A5020942146 @default.
- W2125520565 creator A5028813797 @default.
- W2125520565 creator A5035804943 @default.
- W2125520565 creator A5064889924 @default.
- W2125520565 date "2013-11-01" @default.
- W2125520565 modified "2023-10-07" @default.
- W2125520565 title "An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images" @default.
- W2125520565 cites W1973219769 @default.
- W2125520565 cites W1976980364 @default.
- W2125520565 cites W1988230819 @default.
- W2125520565 cites W1988763375 @default.
- W2125520565 cites W1989941321 @default.
- W2125520565 cites W1992622025 @default.
- W2125520565 cites W1994744148 @default.
- W2125520565 cites W2003134562 @default.
- W2125520565 cites W2005059732 @default.
- W2125520565 cites W2008684315 @default.
- W2125520565 cites W2013175688 @default.
- W2125520565 cites W2014321992 @default.
- W2125520565 cites W2022752359 @default.
- W2125520565 cites W2024810474 @default.
- W2125520565 cites W2030925139 @default.
- W2125520565 cites W2031946334 @default.
- W2125520565 cites W2033981709 @default.
- W2125520565 cites W2044694080 @default.
- W2125520565 cites W2048305171 @default.
- W2125520565 cites W2048742617 @default.
- W2125520565 cites W2055523044 @default.
- W2125520565 cites W2056657701 @default.
- W2125520565 cites W2057936307 @default.
- W2125520565 cites W2065069164 @default.
- W2125520565 cites W2067445591 @default.
- W2125520565 cites W2069673223 @default.
- W2125520565 cites W2070078592 @default.
- W2125520565 cites W2071583824 @default.
- W2125520565 cites W2081322852 @default.
- W2125520565 cites W2088805342 @default.
- W2125520565 cites W2088874310 @default.
- W2125520565 cites W2088908666 @default.
- W2125520565 cites W2123468157 @default.
- W2125520565 cites W2127578521 @default.
- W2125520565 cites W2128349896 @default.
- W2125520565 cites W2129449534 @default.
- W2125520565 cites W2136239485 @default.
- W2125520565 cites W2137681616 @default.
- W2125520565 cites W2142635246 @default.
- W2125520565 cites W2145804350 @default.
- W2125520565 cites W2145843133 @default.
- W2125520565 cites W2154687435 @default.
- W2125520565 cites W2166096127 @default.
- W2125520565 cites W2911546748 @default.
- W2125520565 cites W3023135459 @default.
- W2125520565 doi "https://doi.org/10.1016/j.energy.2013.09.008" @default.
- W2125520565 hasPublicationYear "2013" @default.
- W2125520565 type Work @default.
- W2125520565 sameAs 2125520565 @default.
- W2125520565 citedByCount "124" @default.
- W2125520565 countsByYear W21255205652014 @default.
- W2125520565 countsByYear W21255205652015 @default.
- W2125520565 countsByYear W21255205652016 @default.
- W2125520565 countsByYear W21255205652017 @default.
- W2125520565 countsByYear W21255205652018 @default.
- W2125520565 countsByYear W21255205652019 @default.
- W2125520565 countsByYear W21255205652020 @default.
- W2125520565 countsByYear W21255205652021 @default.
- W2125520565 countsByYear W21255205652022 @default.
- W2125520565 countsByYear W21255205652023 @default.
- W2125520565 crossrefType "journal-article" @default.
- W2125520565 hasAuthorship W2125520565A5020942146 @default.
- W2125520565 hasAuthorship W2125520565A5028813797 @default.
- W2125520565 hasAuthorship W2125520565A5035804943 @default.
- W2125520565 hasAuthorship W2125520565A5064889924 @default.
- W2125520565 hasConcept C105795698 @default.
- W2125520565 hasConcept C119857082 @default.
- W2125520565 hasConcept C127413603 @default.
- W2125520565 hasConcept C139945424 @default.
- W2125520565 hasConcept C146978453 @default.
- W2125520565 hasConcept C153294291 @default.
- W2125520565 hasConcept C154945302 @default.
- W2125520565 hasConcept C19269812 @default.
- W2125520565 hasConcept C205649164 @default.
- W2125520565 hasConcept C2778102629 @default.
- W2125520565 hasConcept C2780092901 @default.
- W2125520565 hasConcept C33923547 @default.
- W2125520565 hasConcept C39432304 @default.
- W2125520565 hasConcept C41008148 @default.
- W2125520565 hasConcept C50644808 @default.
- W2125520565 hasConcept C62649853 @default.
- W2125520565 hasConcept C73329638 @default.
- W2125520565 hasConceptScore W2125520565C105795698 @default.
- W2125520565 hasConceptScore W2125520565C119857082 @default.
- W2125520565 hasConceptScore W2125520565C127413603 @default.
- W2125520565 hasConceptScore W2125520565C139945424 @default.
- W2125520565 hasConceptScore W2125520565C146978453 @default.
- W2125520565 hasConceptScore W2125520565C153294291 @default.
- W2125520565 hasConceptScore W2125520565C154945302 @default.