Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126009268> ?p ?o ?g. }
- W2126009268 endingPage "66" @default.
- W2126009268 startingPage "55" @default.
- W2126009268 abstract "We describe probabilistic self-localization techniques for mobile robots that are based on the principle of maximum-likelihood estimation. The basic method is to compare a map generated at the current robot position with a previously generated map of the environment in order to probabilistically maximize the agreement between the maps. This method is able to operate in both indoor and outdoor environments using either discrete features or an occupancy grid to represent the world map. The map may be generated using any method to detect features in the robot's surroundings, including vision, sonar, and laser range-finder. We perform an efficient global search of the pose space that guarantees that the best position is found according to the probabilistic map agreement measure in a discretized pose space. In addition, subpixel localization and uncertainty estimation are performed by fitting the likelihood function with a parameterized surface. We describe the application of these techniques in several experiments." @default.
- W2126009268 created "2016-06-24" @default.
- W2126009268 creator A5059085044 @default.
- W2126009268 date "2000-01-01" @default.
- W2126009268 modified "2023-10-16" @default.
- W2126009268 title "Probabilistic self-localization for mobile robots" @default.
- W2126009268 cites W1489258026 @default.
- W2126009268 cites W1532977286 @default.
- W2126009268 cites W1577509784 @default.
- W2126009268 cites W1644054796 @default.
- W2126009268 cites W1783024479 @default.
- W2126009268 cites W1819990927 @default.
- W2126009268 cites W1925409869 @default.
- W2126009268 cites W1966333005 @default.
- W2126009268 cites W1973589304 @default.
- W2126009268 cites W1982180670 @default.
- W2126009268 cites W1988497975 @default.
- W2126009268 cites W2008608905 @default.
- W2126009268 cites W2012447162 @default.
- W2126009268 cites W2024766881 @default.
- W2126009268 cites W2033873359 @default.
- W2126009268 cites W2046877283 @default.
- W2126009268 cites W2058098593 @default.
- W2126009268 cites W2061734820 @default.
- W2126009268 cites W2069537876 @default.
- W2126009268 cites W2080362491 @default.
- W2126009268 cites W2098261019 @default.
- W2126009268 cites W2099747208 @default.
- W2126009268 cites W2100904191 @default.
- W2126009268 cites W2102621601 @default.
- W2126009268 cites W2104467353 @default.
- W2126009268 cites W2109749443 @default.
- W2126009268 cites W2115262059 @default.
- W2126009268 cites W2115356364 @default.
- W2126009268 cites W2118104180 @default.
- W2126009268 cites W2118756337 @default.
- W2126009268 cites W2124374240 @default.
- W2126009268 cites W2125484891 @default.
- W2126009268 cites W2128436322 @default.
- W2126009268 cites W2134821837 @default.
- W2126009268 cites W2135706615 @default.
- W2126009268 cites W2143004800 @default.
- W2126009268 cites W2143279499 @default.
- W2126009268 cites W2143360790 @default.
- W2126009268 cites W2145060371 @default.
- W2126009268 cites W2158057652 @default.
- W2126009268 cites W2158240273 @default.
- W2126009268 cites W2159456898 @default.
- W2126009268 cites W2160754664 @default.
- W2126009268 cites W2166247761 @default.
- W2126009268 cites W2168753754 @default.
- W2126009268 cites W2169545352 @default.
- W2126009268 cites W2171626365 @default.
- W2126009268 cites W2177031017 @default.
- W2126009268 cites W2511066081 @default.
- W2126009268 cites W2704421483 @default.
- W2126009268 cites W4230434741 @default.
- W2126009268 cites W4238554946 @default.
- W2126009268 cites W4238970325 @default.
- W2126009268 doi "https://doi.org/10.1109/70.833191" @default.
- W2126009268 hasPublicationYear "2000" @default.
- W2126009268 type Work @default.
- W2126009268 sameAs 2126009268 @default.
- W2126009268 citedByCount "186" @default.
- W2126009268 countsByYear W21260092682012 @default.
- W2126009268 countsByYear W21260092682013 @default.
- W2126009268 countsByYear W21260092682014 @default.
- W2126009268 countsByYear W21260092682015 @default.
- W2126009268 countsByYear W21260092682016 @default.
- W2126009268 countsByYear W21260092682017 @default.
- W2126009268 countsByYear W21260092682018 @default.
- W2126009268 countsByYear W21260092682019 @default.
- W2126009268 countsByYear W21260092682020 @default.
- W2126009268 countsByYear W21260092682021 @default.
- W2126009268 countsByYear W21260092682022 @default.
- W2126009268 countsByYear W21260092682023 @default.
- W2126009268 crossrefType "journal-article" @default.
- W2126009268 hasAuthorship W2126009268A5059085044 @default.
- W2126009268 hasConcept C10138342 @default.
- W2126009268 hasConcept C11413529 @default.
- W2126009268 hasConcept C154945302 @default.
- W2126009268 hasConcept C156172958 @default.
- W2126009268 hasConcept C162324750 @default.
- W2126009268 hasConcept C165464430 @default.
- W2126009268 hasConcept C167928553 @default.
- W2126009268 hasConcept C198082294 @default.
- W2126009268 hasConcept C19966478 @default.
- W2126009268 hasConcept C31972630 @default.
- W2126009268 hasConcept C41008148 @default.
- W2126009268 hasConcept C49937458 @default.
- W2126009268 hasConcept C555745239 @default.
- W2126009268 hasConcept C57077369 @default.
- W2126009268 hasConcept C89106044 @default.
- W2126009268 hasConcept C90509273 @default.
- W2126009268 hasConceptScore W2126009268C10138342 @default.
- W2126009268 hasConceptScore W2126009268C11413529 @default.
- W2126009268 hasConceptScore W2126009268C154945302 @default.
- W2126009268 hasConceptScore W2126009268C156172958 @default.