Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126127639> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2126127639 endingPage "722" @default.
- W2126127639 startingPage "710" @default.
- W2126127639 abstract "The electronic structure of one-dimensional binary alloys is studied in terms of exact mathematical expressions. It is shown by counter examples that the Saxon-Hutner theorem and its converse do not necessarily hold for all potentials. The exact phase transfer theory is used. The present approach has the advantage that it can examine with the same ease both the Saxon-Hutner theorem and its converse. Various sufficient conditions of validity are found. The physical content of these conditions for potentials that are localized and symmetric is analyzed by means of the one-dimensional scattering phase shifts of the individual constituent potentials. As an example, it is shown that both the Saxon-Hutner theorem and its converse are valid if the phase shifts of the two localized symmetric potentials forming the binary alloy are solutions belonging to a certain class $T$, in which the even and odd phase shifts of type-$A$ and type-$B$ symmetric potentials indicated by ${ensuremath{alpha}}_{+}$, ${ensuremath{beta}}_{+}$, and ${ensuremath{alpha}}_{ensuremath{-}}$, ${ensuremath{beta}}_{ensuremath{-}}$, respectively, satisfy the condition $[frac{sin({ensuremath{alpha}}_{+}+{ensuremath{alpha}}_{ensuremath{-}})}{sin({ensuremath{alpha}}_{+}ensuremath{-}{ensuremath{alpha}}_{ensuremath{-}})}]=[frac{sin({ensuremath{beta}}_{+}+{ensuremath{beta}}_{ensuremath{-}})}{sin({ensuremath{beta}}_{+}ensuremath{-}{ensuremath{beta}}_{ensuremath{-}})}]=f$, where $f$ is a constant. The analysis can be trivially extended to the study of alloys composed of more than two elements." @default.
- W2126127639 created "2016-06-24" @default.
- W2126127639 creator A5080382446 @default.
- W2126127639 date "1968-11-15" @default.
- W2126127639 modified "2023-09-26" @default.
- W2126127639 title "Electronic Structure of One-Dimensional Binary Alloys" @default.
- W2126127639 cites W1850123770 @default.
- W2126127639 cites W2019642461 @default.
- W2126127639 cites W2036773465 @default.
- W2126127639 cites W2039541134 @default.
- W2126127639 cites W2070394964 @default.
- W2126127639 cites W2071910146 @default.
- W2126127639 cites W2076710360 @default.
- W2126127639 cites W2322917574 @default.
- W2126127639 cites W2585071995 @default.
- W2126127639 doi "https://doi.org/10.1103/physrev.175.710" @default.
- W2126127639 hasPublicationYear "1968" @default.
- W2126127639 type Work @default.
- W2126127639 sameAs 2126127639 @default.
- W2126127639 citedByCount "25" @default.
- W2126127639 countsByYear W21261276392022 @default.
- W2126127639 crossrefType "journal-article" @default.
- W2126127639 hasAuthorship W2126127639A5080382446 @default.
- W2126127639 hasConcept C114614502 @default.
- W2126127639 hasConcept C121332964 @default.
- W2126127639 hasConcept C184779094 @default.
- W2126127639 hasConcept C18903297 @default.
- W2126127639 hasConcept C199360897 @default.
- W2126127639 hasConcept C2524010 @default.
- W2126127639 hasConcept C26873012 @default.
- W2126127639 hasConcept C2776174256 @default.
- W2126127639 hasConcept C2776809875 @default.
- W2126127639 hasConcept C2777299769 @default.
- W2126127639 hasConcept C33923547 @default.
- W2126127639 hasConcept C37914503 @default.
- W2126127639 hasConcept C41008148 @default.
- W2126127639 hasConcept C44280652 @default.
- W2126127639 hasConcept C48372109 @default.
- W2126127639 hasConcept C62520636 @default.
- W2126127639 hasConcept C86803240 @default.
- W2126127639 hasConcept C94375191 @default.
- W2126127639 hasConceptScore W2126127639C114614502 @default.
- W2126127639 hasConceptScore W2126127639C121332964 @default.
- W2126127639 hasConceptScore W2126127639C184779094 @default.
- W2126127639 hasConceptScore W2126127639C18903297 @default.
- W2126127639 hasConceptScore W2126127639C199360897 @default.
- W2126127639 hasConceptScore W2126127639C2524010 @default.
- W2126127639 hasConceptScore W2126127639C26873012 @default.
- W2126127639 hasConceptScore W2126127639C2776174256 @default.
- W2126127639 hasConceptScore W2126127639C2776809875 @default.
- W2126127639 hasConceptScore W2126127639C2777299769 @default.
- W2126127639 hasConceptScore W2126127639C33923547 @default.
- W2126127639 hasConceptScore W2126127639C37914503 @default.
- W2126127639 hasConceptScore W2126127639C41008148 @default.
- W2126127639 hasConceptScore W2126127639C44280652 @default.
- W2126127639 hasConceptScore W2126127639C48372109 @default.
- W2126127639 hasConceptScore W2126127639C62520636 @default.
- W2126127639 hasConceptScore W2126127639C86803240 @default.
- W2126127639 hasConceptScore W2126127639C94375191 @default.
- W2126127639 hasIssue "3" @default.
- W2126127639 hasLocation W21261276391 @default.
- W2126127639 hasOpenAccess W2126127639 @default.
- W2126127639 hasPrimaryLocation W21261276391 @default.
- W2126127639 hasRelatedWork W1997086491 @default.
- W2126127639 hasRelatedWork W2018471884 @default.
- W2126127639 hasRelatedWork W2028255422 @default.
- W2126127639 hasRelatedWork W2058670548 @default.
- W2126127639 hasRelatedWork W2095055141 @default.
- W2126127639 hasRelatedWork W2136840455 @default.
- W2126127639 hasRelatedWork W2791153078 @default.
- W2126127639 hasRelatedWork W4210298410 @default.
- W2126127639 hasRelatedWork W4255514593 @default.
- W2126127639 hasRelatedWork W75138117 @default.
- W2126127639 hasVolume "175" @default.
- W2126127639 isParatext "false" @default.
- W2126127639 isRetracted "false" @default.
- W2126127639 magId "2126127639" @default.
- W2126127639 workType "article" @default.