Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126199450> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2126199450 abstract "One primary concern of software engineering is prediction accuracy. We use datasets to build and validate prediction systems of software development effort, for example. However it is not uncommon for datasets to contain missing values. When using machine learning techniques to build such prediction systems, handling of incomplete data is an important issue for classifier learning since missing values in either training or test set or in both sets can affect prediction accuracy. Many works in machine learning and statistics have shown that combining (ensemble) individual classifiers is an effective technique for improving accuracy of classification. The ensemble strategy is investigated in the context of incomplete data and software prediction. An ensemble Bayesian multiple imputation and nearest neighbour single imputation method, BAMINNSI, is proposed that constructs ensembles based on two imputation methods. Strong results on two benchmark industrial datasets using decision trees support the method" @default.
- W2126199450 created "2016-06-24" @default.
- W2126199450 creator A5062642521 @default.
- W2126199450 creator A5073968263 @default.
- W2126199450 date "2005-10-24" @default.
- W2126199450 modified "2023-09-25" @default.
- W2126199450 title "Ensemble Imputation Methods for Missing Software Engineering Data" @default.
- W2126199450 cites W1550791322 @default.
- W2126199450 cites W1598553907 @default.
- W2126199450 cites W1605688901 @default.
- W2126199450 cites W1678889691 @default.
- W2126199450 cites W2031668066 @default.
- W2126199450 cites W2058128280 @default.
- W2126199450 cites W2095778055 @default.
- W2126199450 cites W2098168647 @default.
- W2126199450 cites W2101728371 @default.
- W2126199450 cites W2101796008 @default.
- W2126199450 cites W2131378644 @default.
- W2126199450 cites W2136691316 @default.
- W2126199450 cites W2152761983 @default.
- W2126199450 cites W2157542847 @default.
- W2126199450 cites W2172074277 @default.
- W2126199450 cites W4212883601 @default.
- W2126199450 cites W4245588985 @default.
- W2126199450 cites W4300187280 @default.
- W2126199450 doi "https://doi.org/10.1109/metrics.2005.21" @default.
- W2126199450 hasPublicationYear "2005" @default.
- W2126199450 type Work @default.
- W2126199450 sameAs 2126199450 @default.
- W2126199450 citedByCount "20" @default.
- W2126199450 countsByYear W21261994502012 @default.
- W2126199450 countsByYear W21261994502014 @default.
- W2126199450 countsByYear W21261994502015 @default.
- W2126199450 countsByYear W21261994502016 @default.
- W2126199450 countsByYear W21261994502018 @default.
- W2126199450 countsByYear W21261994502019 @default.
- W2126199450 countsByYear W21261994502020 @default.
- W2126199450 countsByYear W21261994502021 @default.
- W2126199450 countsByYear W21261994502023 @default.
- W2126199450 crossrefType "proceedings-article" @default.
- W2126199450 hasAuthorship W2126199450A5062642521 @default.
- W2126199450 hasAuthorship W2126199450A5073968263 @default.
- W2126199450 hasConcept C119857082 @default.
- W2126199450 hasConcept C124101348 @default.
- W2126199450 hasConcept C199360897 @default.
- W2126199450 hasConcept C2522767166 @default.
- W2126199450 hasConcept C2777904410 @default.
- W2126199450 hasConcept C41008148 @default.
- W2126199450 hasConcept C58041806 @default.
- W2126199450 hasConcept C9357733 @default.
- W2126199450 hasConceptScore W2126199450C119857082 @default.
- W2126199450 hasConceptScore W2126199450C124101348 @default.
- W2126199450 hasConceptScore W2126199450C199360897 @default.
- W2126199450 hasConceptScore W2126199450C2522767166 @default.
- W2126199450 hasConceptScore W2126199450C2777904410 @default.
- W2126199450 hasConceptScore W2126199450C41008148 @default.
- W2126199450 hasConceptScore W2126199450C58041806 @default.
- W2126199450 hasConceptScore W2126199450C9357733 @default.
- W2126199450 hasLocation W21261994501 @default.
- W2126199450 hasOpenAccess W2126199450 @default.
- W2126199450 hasPrimaryLocation W21261994501 @default.
- W2126199450 hasRelatedWork W2399773816 @default.
- W2126199450 hasRelatedWork W2541565311 @default.
- W2126199450 hasRelatedWork W2574666645 @default.
- W2126199450 hasRelatedWork W2619796081 @default.
- W2126199450 hasRelatedWork W2751555317 @default.
- W2126199450 hasRelatedWork W2979641641 @default.
- W2126199450 hasRelatedWork W3049453136 @default.
- W2126199450 hasRelatedWork W3179858851 @default.
- W2126199450 hasRelatedWork W4312712358 @default.
- W2126199450 hasRelatedWork W569810835 @default.
- W2126199450 isParatext "false" @default.
- W2126199450 isRetracted "false" @default.
- W2126199450 magId "2126199450" @default.
- W2126199450 workType "article" @default.