Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126281632> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2126281632 endingPage "114" @default.
- W2126281632 startingPage "110" @default.
- W2126281632 abstract "A probabilistic method is proposed for segmentation of the knee joint. A likelihood function is formulated that explicitly models overlapping object appearance. Priors on global appearance and geometry (including shape) are learned from example images. Markov chain Monte Carlo methods are used to obtain samples from a posterior distribution over model parameters from which expectations can be estimated. The result is a probabilistic segmen- tation that quantifies uncertainty so that measurements such as joint space can be made with associated uncertainty. Joint space area and mean point-to-contour distance are used for evaluation. The aim of this paper is to outline a probabilistic, model-based segmentation method for the knee joint from x-ray images and to make explicit the uncertainty in the segmentation so obtained. The method explicitly handles the possible overlapping of femur and tibia and their appearance models. Such cases are not handled in methods based on active contours (1), active shape models or active appearance models (2), for example. Segmentation of objects is often only an intermediate result. Consider for example medical image analysis tasks which involve measuring the size of anatomical structures. Most standard segmentation algorithms result in a single solution without any information as to the confidence in this solution. No information about uncertainty is propagated to the subsequent size estimation step. Furthermore, anatomical structures almost inevitably overlap. In medical applications, especially, it is desirable to have an indication of the certainty of a measurement and to cope with structures that overlap or are in close proximity. The performance of the proposed method is evaluated by applying it to the segmentation of the knee joint to enable the measurement of joint space, an important biomarker for the assessment of osteoarthritis (3). 2 Modelling Knee Radiographs The general task of segmenting modelled objects from an image can be described in a Bayesian framework as that of inferring the conditional distribution P (M|I, I, S) which is the probability of the model parameters, M, given a test image I, a set of training images, I, and their annotations, S. Each object can be described by its geometry and appearance in the image and, more specifically, in terms of shape parameters, S, geometric (non-shape) parameters, G, global appearance parameters, Ag, and local appearance parameters, Al. Using Bayes' rule and assuming P (I) is fixed: P (M|I) ∝ p(I|M)P (M )= p(I|G, S, Ag ,A l)P (G)P (S)P (Ag)P (Al) (1)" @default.
- W2126281632 created "2016-06-24" @default.
- W2126281632 creator A5022888820 @default.
- W2126281632 creator A5025763220 @default.
- W2126281632 creator A5032908709 @default.
- W2126281632 creator A5061241647 @default.
- W2126281632 date "2006-01-01" @default.
- W2126281632 modified "2023-09-26" @default.
- W2126281632 title "Probabilistic Segmentation of the Knee Joint from X-ray Images" @default.
- W2126281632 cites W14179953 @default.
- W2126281632 cites W1545755623 @default.
- W2126281632 cites W1967680722 @default.
- W2126281632 cites W2059804132 @default.
- W2126281632 cites W2099530880 @default.
- W2126281632 cites W2104095591 @default.
- W2126281632 cites W2113023402 @default.
- W2126281632 cites W2135194391 @default.
- W2126281632 hasPublicationYear "2006" @default.
- W2126281632 type Work @default.
- W2126281632 sameAs 2126281632 @default.
- W2126281632 citedByCount "2" @default.
- W2126281632 crossrefType "journal-article" @default.
- W2126281632 hasAuthorship W2126281632A5022888820 @default.
- W2126281632 hasAuthorship W2126281632A5025763220 @default.
- W2126281632 hasAuthorship W2126281632A5032908709 @default.
- W2126281632 hasAuthorship W2126281632A5061241647 @default.
- W2126281632 hasConcept C105795698 @default.
- W2126281632 hasConcept C107673813 @default.
- W2126281632 hasConcept C118317068 @default.
- W2126281632 hasConcept C124504099 @default.
- W2126281632 hasConcept C153180895 @default.
- W2126281632 hasConcept C154945302 @default.
- W2126281632 hasConcept C177769412 @default.
- W2126281632 hasConcept C18653775 @default.
- W2126281632 hasConcept C31972630 @default.
- W2126281632 hasConcept C33923547 @default.
- W2126281632 hasConcept C41008148 @default.
- W2126281632 hasConcept C49937458 @default.
- W2126281632 hasConcept C89600930 @default.
- W2126281632 hasConceptScore W2126281632C105795698 @default.
- W2126281632 hasConceptScore W2126281632C107673813 @default.
- W2126281632 hasConceptScore W2126281632C118317068 @default.
- W2126281632 hasConceptScore W2126281632C124504099 @default.
- W2126281632 hasConceptScore W2126281632C153180895 @default.
- W2126281632 hasConceptScore W2126281632C154945302 @default.
- W2126281632 hasConceptScore W2126281632C177769412 @default.
- W2126281632 hasConceptScore W2126281632C18653775 @default.
- W2126281632 hasConceptScore W2126281632C31972630 @default.
- W2126281632 hasConceptScore W2126281632C33923547 @default.
- W2126281632 hasConceptScore W2126281632C41008148 @default.
- W2126281632 hasConceptScore W2126281632C49937458 @default.
- W2126281632 hasConceptScore W2126281632C89600930 @default.
- W2126281632 hasLocation W21262816321 @default.
- W2126281632 hasOpenAccess W2126281632 @default.
- W2126281632 hasPrimaryLocation W21262816321 @default.
- W2126281632 hasRelatedWork W123086377 @default.
- W2126281632 hasRelatedWork W1501769036 @default.
- W2126281632 hasRelatedWork W1520599083 @default.
- W2126281632 hasRelatedWork W1544431484 @default.
- W2126281632 hasRelatedWork W1546217776 @default.
- W2126281632 hasRelatedWork W1979467704 @default.
- W2126281632 hasRelatedWork W2011365573 @default.
- W2126281632 hasRelatedWork W2083181574 @default.
- W2126281632 hasRelatedWork W2094856190 @default.
- W2126281632 hasRelatedWork W2101794925 @default.
- W2126281632 hasRelatedWork W2104099503 @default.
- W2126281632 hasRelatedWork W2111771778 @default.
- W2126281632 hasRelatedWork W2157030436 @default.
- W2126281632 hasRelatedWork W2161739205 @default.
- W2126281632 hasRelatedWork W2165902556 @default.
- W2126281632 hasRelatedWork W2547403458 @default.
- W2126281632 hasRelatedWork W2759706418 @default.
- W2126281632 hasRelatedWork W2951977119 @default.
- W2126281632 hasRelatedWork W3158837004 @default.
- W2126281632 hasRelatedWork W81519799 @default.
- W2126281632 isParatext "false" @default.
- W2126281632 isRetracted "false" @default.
- W2126281632 magId "2126281632" @default.
- W2126281632 workType "article" @default.