Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126358326> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2126358326 abstract "Biological data presents unique problems for data analysis due to its high dimensions. Microarray data is one example of such data which has received much attention in recent years. Machine learning algorithms such as support vector machines (SVM) are ideal for microarray data due to its high classification accuracies. However, sometimes the information being sought is a list of genes which best separates the classes, and not a classification rate.Decision trees are one alternative which do not perform as well as SVMs, but their output is easily understood by non-specialists. A major obstacle with applying current decision tree implementations for high-dimensional data sets is their tendency to assign the same scores for multiple attributes. In this paper, we propose two distribution-dependant criteria for decision trees to improve their usefulness for microarray classification." @default.
- W2126358326 created "2016-06-24" @default.
- W2126358326 creator A5012617043 @default.
- W2126358326 creator A5045178600 @default.
- W2126358326 creator A5059001924 @default.
- W2126358326 date "2006-01-01" @default.
- W2126358326 modified "2023-10-16" @default.
- W2126358326 title "Applying Gaussian Distribution-Dependent Criteria to Decision Trees for High-Dimensional Microarray Data" @default.
- W2126358326 cites W1833977909 @default.
- W2126358326 cites W1965555277 @default.
- W2126358326 cites W2002666062 @default.
- W2126358326 cites W2006681603 @default.
- W2126358326 cites W2064208261 @default.
- W2126358326 cites W2081397152 @default.
- W2126358326 cites W2087684630 @default.
- W2126358326 cites W2088851040 @default.
- W2126358326 cites W2097557760 @default.
- W2126358326 cites W2109363337 @default.
- W2126358326 cites W2119668204 @default.
- W2126358326 cites W2134338931 @default.
- W2126358326 cites W2137476312 @default.
- W2126358326 cites W2158418996 @default.
- W2126358326 cites W2159400887 @default.
- W2126358326 cites W2495204608 @default.
- W2126358326 doi "https://doi.org/10.1007/11960669_5" @default.
- W2126358326 hasPublicationYear "2006" @default.
- W2126358326 type Work @default.
- W2126358326 sameAs 2126358326 @default.
- W2126358326 citedByCount "2" @default.
- W2126358326 countsByYear W21263583262013 @default.
- W2126358326 countsByYear W21263583262014 @default.
- W2126358326 crossrefType "book-chapter" @default.
- W2126358326 hasAuthorship W2126358326A5012617043 @default.
- W2126358326 hasAuthorship W2126358326A5045178600 @default.
- W2126358326 hasAuthorship W2126358326A5059001924 @default.
- W2126358326 hasConcept C104317684 @default.
- W2126358326 hasConcept C113174947 @default.
- W2126358326 hasConcept C119857082 @default.
- W2126358326 hasConcept C12267149 @default.
- W2126358326 hasConcept C124101348 @default.
- W2126358326 hasConcept C134306372 @default.
- W2126358326 hasConcept C150194340 @default.
- W2126358326 hasConcept C154945302 @default.
- W2126358326 hasConcept C17744445 @default.
- W2126358326 hasConcept C185592680 @default.
- W2126358326 hasConcept C199539241 @default.
- W2126358326 hasConcept C2776650193 @default.
- W2126358326 hasConcept C33923547 @default.
- W2126358326 hasConcept C41008148 @default.
- W2126358326 hasConcept C55493867 @default.
- W2126358326 hasConcept C8415881 @default.
- W2126358326 hasConcept C84525736 @default.
- W2126358326 hasConceptScore W2126358326C104317684 @default.
- W2126358326 hasConceptScore W2126358326C113174947 @default.
- W2126358326 hasConceptScore W2126358326C119857082 @default.
- W2126358326 hasConceptScore W2126358326C12267149 @default.
- W2126358326 hasConceptScore W2126358326C124101348 @default.
- W2126358326 hasConceptScore W2126358326C134306372 @default.
- W2126358326 hasConceptScore W2126358326C150194340 @default.
- W2126358326 hasConceptScore W2126358326C154945302 @default.
- W2126358326 hasConceptScore W2126358326C17744445 @default.
- W2126358326 hasConceptScore W2126358326C185592680 @default.
- W2126358326 hasConceptScore W2126358326C199539241 @default.
- W2126358326 hasConceptScore W2126358326C2776650193 @default.
- W2126358326 hasConceptScore W2126358326C33923547 @default.
- W2126358326 hasConceptScore W2126358326C41008148 @default.
- W2126358326 hasConceptScore W2126358326C55493867 @default.
- W2126358326 hasConceptScore W2126358326C8415881 @default.
- W2126358326 hasConceptScore W2126358326C84525736 @default.
- W2126358326 hasLocation W21263583261 @default.
- W2126358326 hasOpenAccess W2126358326 @default.
- W2126358326 hasPrimaryLocation W21263583261 @default.
- W2126358326 hasRelatedWork W1575085314 @default.
- W2126358326 hasRelatedWork W1976040938 @default.
- W2126358326 hasRelatedWork W2064050250 @default.
- W2126358326 hasRelatedWork W2326162948 @default.
- W2126358326 hasRelatedWork W2334238299 @default.
- W2126358326 hasRelatedWork W2335612998 @default.
- W2126358326 hasRelatedWork W2760986417 @default.
- W2126358326 hasRelatedWork W3033096792 @default.
- W2126358326 hasRelatedWork W3107474891 @default.
- W2126358326 hasRelatedWork W3184424755 @default.
- W2126358326 isParatext "false" @default.
- W2126358326 isRetracted "false" @default.
- W2126358326 magId "2126358326" @default.
- W2126358326 workType "book-chapter" @default.