Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126372691> ?p ?o ?g. }
- W2126372691 endingPage "15582" @default.
- W2126372691 startingPage "15565" @default.
- W2126372691 abstract "Experimental results for core-electron photoemission ${J}_{mathbf{k}}(ensuremath{omega})$ are often compared with the one-electron spectral function ${A}_{c}({ensuremath{epsilon}}_{k}ensuremath{-}ensuremath{omega}),$ where $ensuremath{omega}$ is the photon energy, ${ensuremath{epsilon}}_{k}$ is the photoelectron energy, and the optical transition matrix elements are taken as constant. Since ${J}_{mathbf{k}}(ensuremath{omega})$ is nonzero only for ${ensuremath{epsilon}}_{k}>0,$ we must actually compare it with ${A}_{c}({ensuremath{epsilon}}_{k}ensuremath{-}ensuremath{omega})ensuremath{theta}({ensuremath{epsilon}}_{k}).$ For metals ${A}_{c}(ensuremath{omega})$ is known to have a quasiparticle (QP) peak with an asymmetric power-law [theories of Mahan, Nozi`eres, de Dominicis, Langreth, and others (MND)] singularity due to low-energy particle-hole excitations. The QP peak starts at the core-electron energy ${ensuremath{epsilon}}_{c},$ and is followed by an extended satellite (shakeup) structure at smaller $ensuremath{omega}.$ For photon energies $ensuremath{omega}$ just above threshold, ${ensuremath{omega}}_{mathrm{th}}=ensuremath{-}{ensuremath{epsilon}}_{c}, {A}_{c}({ensuremath{epsilon}}_{k}ensuremath{-}ensuremath{omega})ensuremath{theta}({ensuremath{epsilon}}_{k})$ as a function of ${ensuremath{epsilon}}_{k} (ensuremath{omega}$ constant) is cut just behind the quasiparticle peak, and neither the tail of the MND line nor the plasmon satellites are present. The sudden (high-energy) limit is given by a convolution of ${A}_{c}(ensuremath{omega})$ and a loss function, i.e., by the Berglund-Spicer two-step expression. Thus ${A}_{c}(ensuremath{omega})$ alone does not give the correct photoelectron spectrum, neither at low nor at high energies. We present an extension of the quantum-mechanical (QM) models developed earlier by Inglesfield, and by Bardyszewski and Hedin to calculate ${J}_{mathbf{k}}(ensuremath{omega}).$ It includes recoil and damping, as well as shakeup effects and extrinsic losses, is exact in the high-energy limit, and allows calculations of ${J}_{mathbf{k}}(ensuremath{omega})$ including the MND line and multiple plasmon losses. The model, which involves electrons coupled to quasibosons, is motivated by detailed arguments. As an illustration we have made quantitative calculations for a semi-infinite jellium with the density of aluminum metal and an embedded atom. The coupling functions (fluctuation potentials) between the electron and the quasibosons are related to the random-phase-approximation dielectric function, and different levels of approximations are evaluated numerically. The differences in the predictions for the photoemission spectra are found small. We confirm the finding by Langreth that the BS limit is reached only in the keV range. At no photon energy are the plasmon satellites close to being either purely intrinsic or extrinsic. For photoelectron energies larger than a few times the plasmon energy, a semiclassical approximation gives results very close to our QM model. At lower energies the QM model gives a large peak in the ratio between the total intensity in the first plasmon satellite and the main peak, which is not reproduced by the SC expression. This maximum has a simple physical explanation in terms of different dampings of the electrons in the QP peak and in the satellite. For the MND peak ${J}_{mathbf{k}}(ensuremath{omega})$ and ${A}_{c}({ensuremath{epsilon}}_{k}ensuremath{-}ensuremath{omega})$ agree well for a range of a few eV, and experimental data can thus be used to extract the MND singularity index. For an embedded atom at a small distance from the surface there are, however, substantial deviations from the large-distance limit. Our model is simple enough to perform quantitative calculations allowing for band-structure and surface details." @default.
- W2126372691 created "2016-06-24" @default.
- W2126372691 creator A5000825716 @default.
- W2126372691 creator A5014096157 @default.
- W2126372691 creator A5070579794 @default.
- W2126372691 date "1998-12-15" @default.
- W2126372691 modified "2023-09-23" @default.
- W2126372691 title "Transition from the adiabatic to the sudden limit in core-electron photoemission" @default.
- W2126372691 cites W1546061921 @default.
- W2126372691 cites W1611670824 @default.
- W2126372691 cites W1974759330 @default.
- W2126372691 cites W1975578471 @default.
- W2126372691 cites W1981915094 @default.
- W2126372691 cites W1985285666 @default.
- W2126372691 cites W1994625089 @default.
- W2126372691 cites W1995756603 @default.
- W2126372691 cites W1997664937 @default.
- W2126372691 cites W2000739578 @default.
- W2126372691 cites W2005624498 @default.
- W2126372691 cites W2006844391 @default.
- W2126372691 cites W2007902643 @default.
- W2126372691 cites W2010301199 @default.
- W2126372691 cites W2011327487 @default.
- W2126372691 cites W2033438549 @default.
- W2126372691 cites W2036476445 @default.
- W2126372691 cites W2037833349 @default.
- W2126372691 cites W2038146637 @default.
- W2126372691 cites W2043540374 @default.
- W2126372691 cites W2048531892 @default.
- W2126372691 cites W2049097002 @default.
- W2126372691 cites W2049380182 @default.
- W2126372691 cites W2051923298 @default.
- W2126372691 cites W2059385775 @default.
- W2126372691 cites W2062281221 @default.
- W2126372691 cites W2063495543 @default.
- W2126372691 cites W2064980497 @default.
- W2126372691 cites W2075088356 @default.
- W2126372691 cites W2078508716 @default.
- W2126372691 cites W2081895100 @default.
- W2126372691 cites W2091620575 @default.
- W2126372691 cites W2141325488 @default.
- W2126372691 cites W4214840129 @default.
- W2126372691 doi "https://doi.org/10.1103/physrevb.58.15565" @default.
- W2126372691 hasPublicationYear "1998" @default.
- W2126372691 type Work @default.
- W2126372691 sameAs 2126372691 @default.
- W2126372691 citedByCount "122" @default.
- W2126372691 countsByYear W21263726912012 @default.
- W2126372691 countsByYear W21263726912013 @default.
- W2126372691 countsByYear W21263726912014 @default.
- W2126372691 countsByYear W21263726912015 @default.
- W2126372691 countsByYear W21263726912016 @default.
- W2126372691 countsByYear W21263726912017 @default.
- W2126372691 countsByYear W21263726912018 @default.
- W2126372691 countsByYear W21263726912019 @default.
- W2126372691 countsByYear W21263726912020 @default.
- W2126372691 countsByYear W21263726912021 @default.
- W2126372691 countsByYear W21263726912022 @default.
- W2126372691 countsByYear W21263726912023 @default.
- W2126372691 crossrefType "journal-article" @default.
- W2126372691 hasAuthorship W2126372691A5000825716 @default.
- W2126372691 hasAuthorship W2126372691A5014096157 @default.
- W2126372691 hasAuthorship W2126372691A5070579794 @default.
- W2126372691 hasConcept C121332964 @default.
- W2126372691 hasConcept C136479403 @default.
- W2126372691 hasConcept C147120987 @default.
- W2126372691 hasConcept C184779094 @default.
- W2126372691 hasConcept C186370098 @default.
- W2126372691 hasConcept C26873012 @default.
- W2126372691 hasConcept C2779557605 @default.
- W2126372691 hasConcept C54101563 @default.
- W2126372691 hasConcept C62520636 @default.
- W2126372691 hasConceptScore W2126372691C121332964 @default.
- W2126372691 hasConceptScore W2126372691C136479403 @default.
- W2126372691 hasConceptScore W2126372691C147120987 @default.
- W2126372691 hasConceptScore W2126372691C184779094 @default.
- W2126372691 hasConceptScore W2126372691C186370098 @default.
- W2126372691 hasConceptScore W2126372691C26873012 @default.
- W2126372691 hasConceptScore W2126372691C2779557605 @default.
- W2126372691 hasConceptScore W2126372691C54101563 @default.
- W2126372691 hasConceptScore W2126372691C62520636 @default.
- W2126372691 hasIssue "23" @default.
- W2126372691 hasLocation W21263726911 @default.
- W2126372691 hasOpenAccess W2126372691 @default.
- W2126372691 hasPrimaryLocation W21263726911 @default.
- W2126372691 hasRelatedWork W1969542372 @default.
- W2126372691 hasRelatedWork W2016879215 @default.
- W2126372691 hasRelatedWork W2023362986 @default.
- W2126372691 hasRelatedWork W2025997165 @default.
- W2126372691 hasRelatedWork W2049656937 @default.
- W2126372691 hasRelatedWork W2100690540 @default.
- W2126372691 hasRelatedWork W2117556389 @default.
- W2126372691 hasRelatedWork W3003901397 @default.
- W2126372691 hasRelatedWork W3177761684 @default.
- W2126372691 hasRelatedWork W72949301 @default.
- W2126372691 hasVolume "58" @default.
- W2126372691 isParatext "false" @default.
- W2126372691 isRetracted "false" @default.