Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126377029> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2126377029 endingPage "367" @default.
- W2126377029 startingPage "347" @default.
- W2126377029 abstract "Clustered longitudinal data are often collected as repeated measures on subjects arising in clusters. Examples include periodontal disease study, where the measurements related to the disease status of each tooth are collected over time for each patient, which can be considered as a cluster. For such applications, the number of teeth for each patient may be related to the overall oral health of the individual and hence may influence the distribution of the outcome measure of interest leading to an informative cluster size. Under such situations, generalised estimating equations (GEE) may lead to invalid inferences. In this article, we investigate the performance of three competing proposals of fitting marginal linear models to clustered longitudinal data, namely, GEE, within-cluster resampling (WCR) and cluster-weighted generalised estimating equations (CWGEE). We show by simulations and theoretical calculations that, when the cluster size is informative, GEE provides biased estimators, while both WCR and CWGEE achieve unbiasedness under a variety of ‘working’ correlation structures for temporal measurements within each subject. Statistical properties of confidence intervals have been investigated using the probability—probability plots. Overall, CWGEE appears to be the recommended choice for marginal parametric inference with clustered longitudinal data that achieves similar parameter estimates and test statistics as WCR while avoiding Monte Carlo computation. The corresponding Wald tests have desirable power properties as well. We illustrate our analysis using a temporal data set on periodontal disease, which clearly demonstrates the need for CWGEE over GEE." @default.
- W2126377029 created "2016-06-24" @default.
- W2126377029 creator A5003292914 @default.
- W2126377029 creator A5055147072 @default.
- W2126377029 creator A5071389166 @default.
- W2126377029 date "2010-03-11" @default.
- W2126377029 modified "2023-09-28" @default.
- W2126377029 title "Inference for marginal linear models for clustered longitudinal data with potentially informative cluster sizes" @default.
- W2126377029 cites W1976566530 @default.
- W2126377029 cites W2015551715 @default.
- W2126377029 cites W2022800069 @default.
- W2126377029 cites W2048931622 @default.
- W2126377029 cites W2049433599 @default.
- W2126377029 cites W2050477027 @default.
- W2126377029 cites W2052955379 @default.
- W2126377029 cites W2062475458 @default.
- W2126377029 cites W2130691021 @default.
- W2126377029 cites W2149860264 @default.
- W2126377029 doi "https://doi.org/10.1177/0962280209347043" @default.
- W2126377029 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20223781" @default.
- W2126377029 hasPublicationYear "2010" @default.
- W2126377029 type Work @default.
- W2126377029 sameAs 2126377029 @default.
- W2126377029 citedByCount "26" @default.
- W2126377029 countsByYear W21263770292013 @default.
- W2126377029 countsByYear W21263770292014 @default.
- W2126377029 countsByYear W21263770292015 @default.
- W2126377029 countsByYear W21263770292016 @default.
- W2126377029 countsByYear W21263770292017 @default.
- W2126377029 countsByYear W21263770292018 @default.
- W2126377029 countsByYear W21263770292019 @default.
- W2126377029 countsByYear W21263770292020 @default.
- W2126377029 countsByYear W21263770292021 @default.
- W2126377029 countsByYear W21263770292022 @default.
- W2126377029 countsByYear W21263770292023 @default.
- W2126377029 crossrefType "journal-article" @default.
- W2126377029 hasAuthorship W2126377029A5003292914 @default.
- W2126377029 hasAuthorship W2126377029A5055147072 @default.
- W2126377029 hasAuthorship W2126377029A5071389166 @default.
- W2126377029 hasConcept C105795698 @default.
- W2126377029 hasConcept C134261354 @default.
- W2126377029 hasConcept C149782125 @default.
- W2126377029 hasConcept C150921843 @default.
- W2126377029 hasConcept C152877465 @default.
- W2126377029 hasConcept C153720581 @default.
- W2126377029 hasConcept C154945302 @default.
- W2126377029 hasConcept C164866538 @default.
- W2126377029 hasConcept C185429906 @default.
- W2126377029 hasConcept C197656967 @default.
- W2126377029 hasConcept C199360897 @default.
- W2126377029 hasConcept C204016326 @default.
- W2126377029 hasConcept C27403532 @default.
- W2126377029 hasConcept C2776214188 @default.
- W2126377029 hasConcept C33923547 @default.
- W2126377029 hasConcept C41008148 @default.
- W2126377029 hasConcept C53084192 @default.
- W2126377029 hasConcept C87007009 @default.
- W2126377029 hasConceptScore W2126377029C105795698 @default.
- W2126377029 hasConceptScore W2126377029C134261354 @default.
- W2126377029 hasConceptScore W2126377029C149782125 @default.
- W2126377029 hasConceptScore W2126377029C150921843 @default.
- W2126377029 hasConceptScore W2126377029C152877465 @default.
- W2126377029 hasConceptScore W2126377029C153720581 @default.
- W2126377029 hasConceptScore W2126377029C154945302 @default.
- W2126377029 hasConceptScore W2126377029C164866538 @default.
- W2126377029 hasConceptScore W2126377029C185429906 @default.
- W2126377029 hasConceptScore W2126377029C197656967 @default.
- W2126377029 hasConceptScore W2126377029C199360897 @default.
- W2126377029 hasConceptScore W2126377029C204016326 @default.
- W2126377029 hasConceptScore W2126377029C27403532 @default.
- W2126377029 hasConceptScore W2126377029C2776214188 @default.
- W2126377029 hasConceptScore W2126377029C33923547 @default.
- W2126377029 hasConceptScore W2126377029C41008148 @default.
- W2126377029 hasConceptScore W2126377029C53084192 @default.
- W2126377029 hasConceptScore W2126377029C87007009 @default.
- W2126377029 hasIssue "4" @default.
- W2126377029 hasLocation W21263770291 @default.
- W2126377029 hasLocation W21263770292 @default.
- W2126377029 hasOpenAccess W2126377029 @default.
- W2126377029 hasPrimaryLocation W21263770291 @default.
- W2126377029 hasRelatedWork W1988971925 @default.
- W2126377029 hasRelatedWork W2006967671 @default.
- W2126377029 hasRelatedWork W2069764417 @default.
- W2126377029 hasRelatedWork W2075875797 @default.
- W2126377029 hasRelatedWork W2126377029 @default.
- W2126377029 hasRelatedWork W2152127906 @default.
- W2126377029 hasRelatedWork W2263863104 @default.
- W2126377029 hasRelatedWork W3179584355 @default.
- W2126377029 hasRelatedWork W4214580054 @default.
- W2126377029 hasRelatedWork W188365466 @default.
- W2126377029 hasVolume "20" @default.
- W2126377029 isParatext "false" @default.
- W2126377029 isRetracted "false" @default.
- W2126377029 magId "2126377029" @default.
- W2126377029 workType "article" @default.