Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126579966> ?p ?o ?g. }
- W2126579966 endingPage "11809" @default.
- W2126579966 startingPage "11797" @default.
- W2126579966 abstract "Two parallel calculations of the exchange coupling in a Co/Cu/Co(001) trilayer, both using the same realistic $s, p$, and $d$ tight-binding bands with parameters determined from the ab initio band structures of bulk Cu and Co, are reported. The coupling is first calculated within the framework of the quantum-well (QW) formalism in which the periodic behavior of the spectral density is exploited to derive an analytic formula for the coupling valid for large spacer thicknesses. On the other hand, an alternative expression for the coupling, referred to as cleavage formula, is derived that allows accurate and efficient numerical evaluation of the coupling. An analytic approximation to this expression, valid in the asymptotic region of large spacer thickness, is also obtained. These two approaches are discussed in relation to other existing theoretical formulations of the coupling. The numerical results for the coupling obtained from the cleavage formula are first compared with the analytical QW calculation. The agreement between the two calculations is impressive and entirely justifies the analytical QW approach. The numerical calculation fully confirms the result of the QW formalism that, for trilayers with thick Co layers, the short-period oscillation due to the minority electrons from the vicinity of the Cu Fermi-surface (FS) necks is dominant, the contribution of the long-period oscillation being negligible. This is shown, in the analytical QW formalism, to be due to the existence of bound states for the minority-spin electrons at the Cu FS necks in the ferromagnetic configuration. The dominant short-period oscillation has been confirmed by spin-polarized scanning electron microscopy and observed directly in the most recent photoemission experiments. The full confinement of the minority electrons at the neck of the Cu FS also leads to a strong temperature dependence of the short-period oscillation and an initial decay of the coupling with spacer thickness $N$ that is much slower than predicted by the usual 1/${N}^{2}$ law. For the electrons at the belly of the Cu FS, the confinement is weak in both spin channels and the long-period oscillation hardly changes between zero and room temperatures. In addition, the belly contribution to the coupling decreases at $T=0$ K following the usual 1/${N}^{2}$ dependence. The amplitude of the calculated coupling $ensuremath{approx}1.2 {mathrm{m}mathrm{J}/mathrm{m}}^{2}$ at the first antiferromagnetic peak of Cu is only a factor of 3 larger than the observed coupling strength. Finally, the coupling for 2 ML of Co embedded in Cu has also been evaluated from the cleavage formula. A large initial coupling strength (3.4 mJ/ m${}^{2})$ and comparable contributions from the short- and long-oscillation periods are obtained. This is in complete agreement with theoretical results reported by other groups." @default.
- W2126579966 created "2016-06-24" @default.
- W2126579966 creator A5000507077 @default.
- W2126579966 creator A5008896039 @default.
- W2126579966 creator A5024882359 @default.
- W2126579966 creator A5029052376 @default.
- W2126579966 creator A5042354953 @default.
- W2126579966 creator A5071930889 @default.
- W2126579966 date "1997-11-01" @default.
- W2126579966 modified "2023-10-13" @default.
- W2126579966 title "Quantum-well theory of the exchange coupling in magnetic multilayers with application to Co/Cu/Co(001)" @default.
- W2126579966 cites W1965245884 @default.
- W2126579966 cites W1968423625 @default.
- W2126579966 cites W1969962691 @default.
- W2126579966 cites W1970083396 @default.
- W2126579966 cites W1973882709 @default.
- W2126579966 cites W1975626603 @default.
- W2126579966 cites W1980192200 @default.
- W2126579966 cites W1981320729 @default.
- W2126579966 cites W1983570424 @default.
- W2126579966 cites W1984225880 @default.
- W2126579966 cites W1988783338 @default.
- W2126579966 cites W1994860183 @default.
- W2126579966 cites W1995717961 @default.
- W2126579966 cites W2001755177 @default.
- W2126579966 cites W2014536713 @default.
- W2126579966 cites W2016453675 @default.
- W2126579966 cites W2025263836 @default.
- W2126579966 cites W2026404112 @default.
- W2126579966 cites W2028689103 @default.
- W2126579966 cites W2030388445 @default.
- W2126579966 cites W2032302523 @default.
- W2126579966 cites W2056467311 @default.
- W2126579966 cites W2064102320 @default.
- W2126579966 cites W2066030400 @default.
- W2126579966 cites W2072790036 @default.
- W2126579966 cites W2072908244 @default.
- W2126579966 cites W2083272587 @default.
- W2126579966 cites W2094386791 @default.
- W2126579966 cites W2095313982 @default.
- W2126579966 cites W2122036584 @default.
- W2126579966 cites W2140688333 @default.
- W2126579966 doi "https://doi.org/10.1103/physrevb.56.11797" @default.
- W2126579966 hasPublicationYear "1997" @default.
- W2126579966 type Work @default.
- W2126579966 sameAs 2126579966 @default.
- W2126579966 citedByCount "49" @default.
- W2126579966 countsByYear W21265799662012 @default.
- W2126579966 countsByYear W21265799662013 @default.
- W2126579966 countsByYear W21265799662014 @default.
- W2126579966 countsByYear W21265799662015 @default.
- W2126579966 countsByYear W21265799662017 @default.
- W2126579966 countsByYear W21265799662019 @default.
- W2126579966 countsByYear W21265799662020 @default.
- W2126579966 countsByYear W21265799662022 @default.
- W2126579966 crossrefType "journal-article" @default.
- W2126579966 hasAuthorship W2126579966A5000507077 @default.
- W2126579966 hasAuthorship W2126579966A5008896039 @default.
- W2126579966 hasAuthorship W2126579966A5024882359 @default.
- W2126579966 hasAuthorship W2126579966A5029052376 @default.
- W2126579966 hasAuthorship W2126579966A5042354953 @default.
- W2126579966 hasAuthorship W2126579966A5071930889 @default.
- W2126579966 hasConcept C121332964 @default.
- W2126579966 hasConcept C131584629 @default.
- W2126579966 hasConcept C142362112 @default.
- W2126579966 hasConcept C147120987 @default.
- W2126579966 hasConcept C153349607 @default.
- W2126579966 hasConcept C183971685 @default.
- W2126579966 hasConcept C185592680 @default.
- W2126579966 hasConcept C191897082 @default.
- W2126579966 hasConcept C192562407 @default.
- W2126579966 hasConcept C26873012 @default.
- W2126579966 hasConcept C2778439541 @default.
- W2126579966 hasConcept C2781442258 @default.
- W2126579966 hasConcept C29169072 @default.
- W2126579966 hasConcept C32909587 @default.
- W2126579966 hasConcept C41999313 @default.
- W2126579966 hasConcept C520434653 @default.
- W2126579966 hasConcept C55493867 @default.
- W2126579966 hasConcept C558565934 @default.
- W2126579966 hasConcept C62520636 @default.
- W2126579966 hasConcept C73301696 @default.
- W2126579966 hasConcept C82217956 @default.
- W2126579966 hasConcept C84114770 @default.
- W2126579966 hasConceptScore W2126579966C121332964 @default.
- W2126579966 hasConceptScore W2126579966C131584629 @default.
- W2126579966 hasConceptScore W2126579966C142362112 @default.
- W2126579966 hasConceptScore W2126579966C147120987 @default.
- W2126579966 hasConceptScore W2126579966C153349607 @default.
- W2126579966 hasConceptScore W2126579966C183971685 @default.
- W2126579966 hasConceptScore W2126579966C185592680 @default.
- W2126579966 hasConceptScore W2126579966C191897082 @default.
- W2126579966 hasConceptScore W2126579966C192562407 @default.
- W2126579966 hasConceptScore W2126579966C26873012 @default.
- W2126579966 hasConceptScore W2126579966C2778439541 @default.
- W2126579966 hasConceptScore W2126579966C2781442258 @default.
- W2126579966 hasConceptScore W2126579966C29169072 @default.
- W2126579966 hasConceptScore W2126579966C32909587 @default.