Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126645456> ?p ?o ?g. }
- W2126645456 endingPage "e2" @default.
- W2126645456 startingPage "e2.10" @default.
- W2126645456 abstract "<h3>Introduction</h3> Major adverse cardiac events (MACE) – which include cardiac death and non-fatal myocardial infarction – are severe harmful outcomes that commonly arise after elective non-cardiac vascular surgeries. Current preoperative risk prediction models are not as effective in predicting post-operative outcomes. This talk will discuss the key results of an individual patient-data meta-analysis, based on data from six cohort studies of patients undergoing vascular surgery. <h3>Objectives</h3> We aimed to determine a prediction model that dichotomizes patients into high and low risk categories of MACE within 30 days after noncardiac vascular surgery. <h3>Approach</h3> This is an application of the minimum p-value method (MPM) to determine the optimal cut-off points for: (i) B-type naturietic peptide (BNP) and (ii) N-terminal pro B-type natriuretic peptide (NTproBNP) in predicting MACE within 30 days after non-cardiac vascular surgery. Elevated concentrations of these hormones are secreted into the blood in response to heart failure. We compare results from MPM with those based on the receiver operating characteristic (ROC) curve approach using logistic regression; develop and validate the prediction rule for MACE; and assess the robustness of the results under different statistical models. <h3>Results</h3> The ROC curve approach (applied by Rodseth and colleagues) identified 116pg/mL and 277.5pg/mL as the optimal thresholds for BNP and NTproBNP, respectively. The minimum p-value method dichotomized these covariates as BNP: 115.57pg/mL (p<0.0001) and NTproBNP: 241.7pg/mL (p=0.0001). Our logistic regression analysis identified MINP_thrshld, the indicator variable of our MPM results for BNP and NTproBNP, as a stronger covariate than our ROC curve results. Our final prediction model contained variables MINP_thrshld, the type of surgery, and diabetes mellitus. Internal validation was performed using bootstrapping while mixed effects logistic regression and generalized estimating equations were performed for sensitivity analysis. Although our model was validated using 1000 samples, it was not robust against methods that accounted for clustering effects. <h3>Conclusion</h3> As current preoperative risk stratification models are not as effective in predicting post-operative outcomes for vascular surgery patients, clinicians are at an advantage in using this model for the ease and accuracy that it provides. Further exploration into clustering effects is needed for determining the best model." @default.
- W2126645456 created "2016-06-24" @default.
- W2126645456 creator A5017798396 @default.
- W2126645456 creator A5029801001 @default.
- W2126645456 creator A5032130849 @default.
- W2126645456 creator A5051814197 @default.
- W2126645456 creator A5055094165 @default.
- W2126645456 creator A5057728240 @default.
- W2126645456 creator A5060665928 @default.
- W2126645456 creator A5066903887 @default.
- W2126645456 creator A5067168750 @default.
- W2126645456 creator A5081149773 @default.
- W2126645456 creator A5087171327 @default.
- W2126645456 date "2013-09-07" @default.
- W2126645456 modified "2023-09-27" @default.
- W2126645456 title "PREDICTING THE OCCURRENCE OF MAJOR ADVERSE CARDIAC EVENTS WITHIN 30 DAYS AFTER A PATIENT'S VASCULAR SURGERY: AN INDIVIDUAL PATIENT-DATA META-ANALYSIS" @default.
- W2126645456 cites W1585739798 @default.
- W2126645456 cites W1587614986 @default.
- W2126645456 cites W1966968530 @default.
- W2126645456 cites W1977916382 @default.
- W2126645456 cites W1978018057 @default.
- W2126645456 cites W2008185602 @default.
- W2126645456 cites W2015928959 @default.
- W2126645456 cites W2022255246 @default.
- W2126645456 cites W2027167742 @default.
- W2126645456 cites W2028522126 @default.
- W2126645456 cites W2028896946 @default.
- W2126645456 cites W2033826302 @default.
- W2126645456 cites W2034210960 @default.
- W2126645456 cites W2034222513 @default.
- W2126645456 cites W2034816881 @default.
- W2126645456 cites W2047384680 @default.
- W2126645456 cites W2063728958 @default.
- W2126645456 cites W2064455475 @default.
- W2126645456 cites W2074932800 @default.
- W2126645456 cites W2088885568 @default.
- W2126645456 cites W2092189699 @default.
- W2126645456 cites W2103513547 @default.
- W2126645456 cites W2103553040 @default.
- W2126645456 cites W2104508264 @default.
- W2126645456 cites W2110843198 @default.
- W2126645456 cites W2111561507 @default.
- W2126645456 cites W2124461297 @default.
- W2126645456 cites W2124745752 @default.
- W2126645456 cites W2125118774 @default.
- W2126645456 cites W2129226196 @default.
- W2126645456 cites W2129867177 @default.
- W2126645456 cites W2147493587 @default.
- W2126645456 cites W2152932719 @default.
- W2126645456 cites W2153291863 @default.
- W2126645456 cites W2154775627 @default.
- W2126645456 cites W2167964974 @default.
- W2126645456 cites W2170197654 @default.
- W2126645456 cites W2292879958 @default.
- W2126645456 cites W2316220834 @default.
- W2126645456 cites W2334586393 @default.
- W2126645456 cites W2528588360 @default.
- W2126645456 cites W2735103047 @default.
- W2126645456 doi "https://doi.org/10.1136/jech-2013-203098.19" @default.
- W2126645456 hasPublicationYear "2013" @default.
- W2126645456 type Work @default.
- W2126645456 sameAs 2126645456 @default.
- W2126645456 citedByCount "0" @default.
- W2126645456 crossrefType "journal-article" @default.
- W2126645456 hasAuthorship W2126645456A5017798396 @default.
- W2126645456 hasAuthorship W2126645456A5029801001 @default.
- W2126645456 hasAuthorship W2126645456A5032130849 @default.
- W2126645456 hasAuthorship W2126645456A5051814197 @default.
- W2126645456 hasAuthorship W2126645456A5055094165 @default.
- W2126645456 hasAuthorship W2126645456A5057728240 @default.
- W2126645456 hasAuthorship W2126645456A5060665928 @default.
- W2126645456 hasAuthorship W2126645456A5066903887 @default.
- W2126645456 hasAuthorship W2126645456A5067168750 @default.
- W2126645456 hasAuthorship W2126645456A5081149773 @default.
- W2126645456 hasAuthorship W2126645456A5087171327 @default.
- W2126645456 hasBestOaLocation W21266454561 @default.
- W2126645456 hasConcept C126322002 @default.
- W2126645456 hasConcept C141071460 @default.
- W2126645456 hasConcept C151956035 @default.
- W2126645456 hasConcept C164705383 @default.
- W2126645456 hasConcept C2775915353 @default.
- W2126645456 hasConcept C2778198053 @default.
- W2126645456 hasConcept C2778789114 @default.
- W2126645456 hasConcept C2780739214 @default.
- W2126645456 hasConcept C45393284 @default.
- W2126645456 hasConcept C500558357 @default.
- W2126645456 hasConcept C58471807 @default.
- W2126645456 hasConcept C71924100 @default.
- W2126645456 hasConceptScore W2126645456C126322002 @default.
- W2126645456 hasConceptScore W2126645456C141071460 @default.
- W2126645456 hasConceptScore W2126645456C151956035 @default.
- W2126645456 hasConceptScore W2126645456C164705383 @default.
- W2126645456 hasConceptScore W2126645456C2775915353 @default.
- W2126645456 hasConceptScore W2126645456C2778198053 @default.
- W2126645456 hasConceptScore W2126645456C2778789114 @default.
- W2126645456 hasConceptScore W2126645456C2780739214 @default.
- W2126645456 hasConceptScore W2126645456C45393284 @default.
- W2126645456 hasConceptScore W2126645456C500558357 @default.