Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126688052> ?p ?o ?g. }
- W2126688052 endingPage "174" @default.
- W2126688052 startingPage "166" @default.
- W2126688052 abstract "This study focused on leather industrial effluents treatment by biosorption using Fucus vesiculosus as low-cost adsorbent. These effluents are yellowish-brown color and high concentration of Cr (VI). Therefore, biosorption process was optimized using response surface methodology based on Box–Behnken design operating with a simulated leather effluent obtained by mixture of Cr (VI) solution and four leather dyes. The key variables selected were initial solution pH, biomass dosage and CaCl2 concentration in the pretreatment stage. The statistical analysis shows that pH has a negligible effect, being the biomass dosage and CaCl2 concentration the most significant variables. At optimal conditions, 98% of Cr (VI) and 88% of dyes removal can be achieved. Freundlich fitted better to the obtained equilibrium data for all studied systems than Temkin, Langmuir or D–R models. In addition, the use of the final biosorbent as support-substrate to grown of enzyme producer fungi, Pleurotus ostreatus, was also demonstrated." @default.
- W2126688052 created "2016-06-24" @default.
- W2126688052 creator A5060408906 @default.
- W2126688052 creator A5090861687 @default.
- W2126688052 date "2014-05-01" @default.
- W2126688052 modified "2023-09-27" @default.
- W2126688052 title "Box–Behnken methodology for Cr (VI) and leather dyes removal by an eco-friendly biosorbent: F. vesiculosus" @default.
- W2126688052 cites W112392357 @default.
- W2126688052 cites W1974250293 @default.
- W2126688052 cites W1976415372 @default.
- W2126688052 cites W1982935034 @default.
- W2126688052 cites W1995525794 @default.
- W2126688052 cites W1996703011 @default.
- W2126688052 cites W2005463929 @default.
- W2126688052 cites W2008764121 @default.
- W2126688052 cites W2010439449 @default.
- W2126688052 cites W2017826734 @default.
- W2126688052 cites W2020928389 @default.
- W2126688052 cites W2021151563 @default.
- W2126688052 cites W2021861977 @default.
- W2126688052 cites W2022221462 @default.
- W2126688052 cites W2027649694 @default.
- W2126688052 cites W2030125244 @default.
- W2126688052 cites W2046959228 @default.
- W2126688052 cites W2047348788 @default.
- W2126688052 cites W2053362039 @default.
- W2126688052 cites W2061608934 @default.
- W2126688052 cites W2063084254 @default.
- W2126688052 cites W2069936608 @default.
- W2126688052 cites W2071765964 @default.
- W2126688052 cites W2074493528 @default.
- W2126688052 cites W2087090157 @default.
- W2126688052 cites W2087517162 @default.
- W2126688052 cites W2136744515 @default.
- W2126688052 cites W2148611909 @default.
- W2126688052 cites W2331904821 @default.
- W2126688052 doi "https://doi.org/10.1016/j.biortech.2013.12.125" @default.
- W2126688052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24484851" @default.
- W2126688052 hasPublicationYear "2014" @default.
- W2126688052 type Work @default.
- W2126688052 sameAs 2126688052 @default.
- W2126688052 citedByCount "50" @default.
- W2126688052 countsByYear W21266880522014 @default.
- W2126688052 countsByYear W21266880522015 @default.
- W2126688052 countsByYear W21266880522016 @default.
- W2126688052 countsByYear W21266880522017 @default.
- W2126688052 countsByYear W21266880522018 @default.
- W2126688052 countsByYear W21266880522019 @default.
- W2126688052 countsByYear W21266880522020 @default.
- W2126688052 countsByYear W21266880522021 @default.
- W2126688052 countsByYear W21266880522022 @default.
- W2126688052 countsByYear W21266880522023 @default.
- W2126688052 crossrefType "journal-article" @default.
- W2126688052 hasAuthorship W2126688052A5060408906 @default.
- W2126688052 hasAuthorship W2126688052A5090861687 @default.
- W2126688052 hasConcept C112825004 @default.
- W2126688052 hasConcept C115540264 @default.
- W2126688052 hasConcept C115958267 @default.
- W2126688052 hasConcept C12143843 @default.
- W2126688052 hasConcept C127413603 @default.
- W2126688052 hasConcept C13965031 @default.
- W2126688052 hasConcept C147455438 @default.
- W2126688052 hasConcept C150077022 @default.
- W2126688052 hasConcept C150394285 @default.
- W2126688052 hasConcept C170295934 @default.
- W2126688052 hasConcept C178790620 @default.
- W2126688052 hasConcept C185592680 @default.
- W2126688052 hasConcept C2776474821 @default.
- W2126688052 hasConcept C2776812703 @default.
- W2126688052 hasConcept C2776981962 @default.
- W2126688052 hasConcept C2780628916 @default.
- W2126688052 hasConcept C31903555 @default.
- W2126688052 hasConcept C39432304 @default.
- W2126688052 hasConcept C43617362 @default.
- W2126688052 hasConcept C528095902 @default.
- W2126688052 hasConcept C559758991 @default.
- W2126688052 hasConcept C58445606 @default.
- W2126688052 hasConcept C59822182 @default.
- W2126688052 hasConcept C6557445 @default.
- W2126688052 hasConcept C86803240 @default.
- W2126688052 hasConcept C87717796 @default.
- W2126688052 hasConceptScore W2126688052C112825004 @default.
- W2126688052 hasConceptScore W2126688052C115540264 @default.
- W2126688052 hasConceptScore W2126688052C115958267 @default.
- W2126688052 hasConceptScore W2126688052C12143843 @default.
- W2126688052 hasConceptScore W2126688052C127413603 @default.
- W2126688052 hasConceptScore W2126688052C13965031 @default.
- W2126688052 hasConceptScore W2126688052C147455438 @default.
- W2126688052 hasConceptScore W2126688052C150077022 @default.
- W2126688052 hasConceptScore W2126688052C150394285 @default.
- W2126688052 hasConceptScore W2126688052C170295934 @default.
- W2126688052 hasConceptScore W2126688052C178790620 @default.
- W2126688052 hasConceptScore W2126688052C185592680 @default.
- W2126688052 hasConceptScore W2126688052C2776474821 @default.
- W2126688052 hasConceptScore W2126688052C2776812703 @default.
- W2126688052 hasConceptScore W2126688052C2776981962 @default.
- W2126688052 hasConceptScore W2126688052C2780628916 @default.
- W2126688052 hasConceptScore W2126688052C31903555 @default.