Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126804077> ?p ?o ?g. }
- W2126804077 endingPage "2582" @default.
- W2126804077 startingPage "2569" @default.
- W2126804077 abstract "Spectral unmixing is an important technique in hyperspectral image exploitation. It comprises the extraction of a set of pure spectral signatures (called endmembers in hyperspectral jargon) and their corresponding fractional abundances in each pixel of the scene. Over the last few years, many approaches have been proposed to automatically extract endmembers, which is a critical step of the spectral unmixing chain. Recently, ant colony optimization (ACO) techniques have reformulated the endmember extraction issue as a combinatorial optimization problem. Due to the huge computation load involved, how to provide suitable candidate endmembers for ACO is particularly important, but this aspect has never been discussed before in the literature. In this paper, we illustrate the capacity of ACO techniques for integrating the results obtained by different endmember extraction algorithms. Our experimental results, conducted using several state-of-the-art endmember extraction approaches using both simulated and a real hyperspectral scene (cuprite), indicate that the proposed ACO-based strategy can provide endmembers which are robust against noise and outliers." @default.
- W2126804077 created "2016-06-24" @default.
- W2126804077 creator A5017927845 @default.
- W2126804077 creator A5022920106 @default.
- W2126804077 creator A5044689489 @default.
- W2126804077 creator A5054292278 @default.
- W2126804077 creator A5066378186 @default.
- W2126804077 creator A5066738004 @default.
- W2126804077 creator A5081033607 @default.
- W2126804077 date "2015-06-01" @default.
- W2126804077 modified "2023-10-14" @default.
- W2126804077 title "Multiple Algorithm Integration Based on Ant Colony Optimization for Endmember Extraction From Hyperspectral Imagery" @default.
- W2126804077 cites W1964570608 @default.
- W2126804077 cites W1970099214 @default.
- W2126804077 cites W1976615758 @default.
- W2126804077 cites W1978160572 @default.
- W2126804077 cites W1994108894 @default.
- W2126804077 cites W2000779965 @default.
- W2126804077 cites W2008367336 @default.
- W2126804077 cites W2012514949 @default.
- W2126804077 cites W2021086890 @default.
- W2126804077 cites W2022470997 @default.
- W2126804077 cites W2042564283 @default.
- W2126804077 cites W2050041778 @default.
- W2126804077 cites W2060147006 @default.
- W2126804077 cites W2060353184 @default.
- W2126804077 cites W2066612219 @default.
- W2126804077 cites W2070424424 @default.
- W2126804077 cites W2070781258 @default.
- W2126804077 cites W2078222544 @default.
- W2126804077 cites W2092155521 @default.
- W2126804077 cites W2093059173 @default.
- W2126804077 cites W2095687521 @default.
- W2126804077 cites W2098295833 @default.
- W2126804077 cites W2101837437 @default.
- W2126804077 cites W2102159812 @default.
- W2126804077 cites W2107222994 @default.
- W2126804077 cites W2109036272 @default.
- W2126804077 cites W2111631716 @default.
- W2126804077 cites W2113399154 @default.
- W2126804077 cites W2116699851 @default.
- W2126804077 cites W2117027921 @default.
- W2126804077 cites W2121657565 @default.
- W2126804077 cites W2122976738 @default.
- W2126804077 cites W2125298866 @default.
- W2126804077 cites W2126527280 @default.
- W2126804077 cites W2136625467 @default.
- W2126804077 cites W2140501674 @default.
- W2126804077 cites W2151649773 @default.
- W2126804077 cites W2156220628 @default.
- W2126804077 cites W2156458885 @default.
- W2126804077 cites W2157321686 @default.
- W2126804077 cites W2163886442 @default.
- W2126804077 cites W2167256583 @default.
- W2126804077 cites W2169924573 @default.
- W2126804077 cites W2170078675 @default.
- W2126804077 cites W2913356454 @default.
- W2126804077 cites W4233760599 @default.
- W2126804077 doi "https://doi.org/10.1109/jstars.2014.2371615" @default.
- W2126804077 hasPublicationYear "2015" @default.
- W2126804077 type Work @default.
- W2126804077 sameAs 2126804077 @default.
- W2126804077 citedByCount "24" @default.
- W2126804077 countsByYear W21268040772016 @default.
- W2126804077 countsByYear W21268040772017 @default.
- W2126804077 countsByYear W21268040772018 @default.
- W2126804077 countsByYear W21268040772019 @default.
- W2126804077 countsByYear W21268040772020 @default.
- W2126804077 countsByYear W21268040772021 @default.
- W2126804077 countsByYear W21268040772022 @default.
- W2126804077 countsByYear W21268040772023 @default.
- W2126804077 crossrefType "journal-article" @default.
- W2126804077 hasAuthorship W2126804077A5017927845 @default.
- W2126804077 hasAuthorship W2126804077A5022920106 @default.
- W2126804077 hasAuthorship W2126804077A5044689489 @default.
- W2126804077 hasAuthorship W2126804077A5054292278 @default.
- W2126804077 hasAuthorship W2126804077A5066378186 @default.
- W2126804077 hasAuthorship W2126804077A5066738004 @default.
- W2126804077 hasAuthorship W2126804077A5081033607 @default.
- W2126804077 hasBestOaLocation W21268040772 @default.
- W2126804077 hasConcept C11413529 @default.
- W2126804077 hasConcept C153180895 @default.
- W2126804077 hasConcept C154945302 @default.
- W2126804077 hasConcept C159078339 @default.
- W2126804077 hasConcept C160633673 @default.
- W2126804077 hasConcept C176641082 @default.
- W2126804077 hasConcept C205649164 @default.
- W2126804077 hasConcept C40128228 @default.
- W2126804077 hasConcept C41008148 @default.
- W2126804077 hasConcept C58237817 @default.
- W2126804077 hasConcept C62649853 @default.
- W2126804077 hasConcept C79337645 @default.
- W2126804077 hasConceptScore W2126804077C11413529 @default.
- W2126804077 hasConceptScore W2126804077C153180895 @default.
- W2126804077 hasConceptScore W2126804077C154945302 @default.
- W2126804077 hasConceptScore W2126804077C159078339 @default.
- W2126804077 hasConceptScore W2126804077C160633673 @default.
- W2126804077 hasConceptScore W2126804077C176641082 @default.