Matches in SemOpenAlex for { <https://semopenalex.org/work/W2126983730> ?p ?o ?g. }
- W2126983730 endingPage "270" @default.
- W2126983730 startingPage "251" @default.
- W2126983730 abstract "Bioclimatic models are widely used tools for assessing potential responses of species to climate change. One commonly used model is BIOCLIM, which summarises up to 35 climatic parameters throughout a species’ known range, and assesses the climatic suitability of habitat under current and future climate scenarios. A criticism of BIOCLIM is that the use of all 35 parameters may lead to over-fitting of the model, which in turn may result in misrepresentations of species’ potential ranges and to the loss of biological reality. In this study, we investigated how different methods of combining climatic parameters in BIOCLIM influenced predictions of the current distributions of 25 Australian butterflies species. Distributions were modeled using three previously used methods of selecting climatic parameters: (i) the full set of 35 parameters, (ii) a customised selection of the most relevant parameters for individual species based on analysing histograms produced by BIOCLIM, which show the values for each parameter at all of the focal species known locations, and (iii) a subset of 8 parameters that may generally influence the distributions of butterflies. We also modeled distributions based on random selections of parameters. Further, we assessed the extent to which parameter choice influenced predictions of the magnitude and direction of range changes under two climate change scenarios for 2020. We found that the size of predicted distributions was negatively correlated with the number of parameters incorporated in the model, with progressive addition of parameters resulting in progressively narrower potential distributions. There was also redundancy amongst some parameters; distributions produced using all 35 parameters were on average half the size of distributions produced using only 6 parameters. The selection of parameters via histogram analysis was influenced, to an extent, by the number of location records for the focal species. Further, species inhabiting different biogeographical zones may have different sets of climatic parameters limiting their distributions; hence, the appropriateness of applying the same subset of parameters to all species may be reduced under these situations. Under future climates, most species were predicted to suffer range reductions regardless of the scenario used and the method of parameter selection. Although the size of predicted distributions varied considerably depending on the method of selecting parameters, there were no significant differences in the proportional change in range size between the three methods: under the worst-case scenario, species’ distributions decrease by an average of 12.6, 11.4, and 15.7%, using all parameters, the ‘customised set’, and the ‘general set’ of parameters, respectively. However, depending on which method of selecting parameters was used, the direction of change was reversed for two species under the worst-case climate change scenario, and for six species under the best-case scenario (out of a total of 25 species). These results suggest that when averaged over multiple species, the proportional loss or gain of climatically suitable habitat is relatively insensitive to the number of parameters used to predict distributions with BIOCLIM. However, when measuring the response of specific species or the actual size of distributions, the number of parameters is likely to be critical." @default.
- W2126983730 created "2016-06-24" @default.
- W2126983730 creator A5041147164 @default.
- W2126983730 creator A5062199956 @default.
- W2126983730 creator A5064872490 @default.
- W2126983730 date "2005-08-01" @default.
- W2126983730 modified "2023-10-18" @default.
- W2126983730 title "Predicting species distributions: use of climatic parameters in BIOCLIM and its impact on predictions of species’ current and future distributions" @default.
- W2126983730 cites W1519918296 @default.
- W2126983730 cites W1544753269 @default.
- W2126983730 cites W1571287920 @default.
- W2126983730 cites W1586888322 @default.
- W2126983730 cites W1655609833 @default.
- W2126983730 cites W1659955759 @default.
- W2126983730 cites W1874605053 @default.
- W2126983730 cites W1894964930 @default.
- W2126983730 cites W1963731531 @default.
- W2126983730 cites W1971640797 @default.
- W2126983730 cites W1972082227 @default.
- W2126983730 cites W1972524694 @default.
- W2126983730 cites W1985618776 @default.
- W2126983730 cites W1992355090 @default.
- W2126983730 cites W1994284044 @default.
- W2126983730 cites W2006448705 @default.
- W2126983730 cites W2012867911 @default.
- W2126983730 cites W2024649846 @default.
- W2126983730 cites W2029545180 @default.
- W2126983730 cites W2031901125 @default.
- W2126983730 cites W2033061601 @default.
- W2126983730 cites W2035921708 @default.
- W2126983730 cites W2036366155 @default.
- W2126983730 cites W2040085089 @default.
- W2126983730 cites W2044096196 @default.
- W2126983730 cites W2046862338 @default.
- W2126983730 cites W2051108229 @default.
- W2126983730 cites W2052283076 @default.
- W2126983730 cites W2075809877 @default.
- W2126983730 cites W2077285506 @default.
- W2126983730 cites W2077314455 @default.
- W2126983730 cites W2077822176 @default.
- W2126983730 cites W2100559723 @default.
- W2126983730 cites W2113218050 @default.
- W2126983730 cites W2115268776 @default.
- W2126983730 cites W2120160157 @default.
- W2126983730 cites W2120218248 @default.
- W2126983730 cites W2124286013 @default.
- W2126983730 cites W2125015085 @default.
- W2126983730 cites W2127304314 @default.
- W2126983730 cites W2133501143 @default.
- W2126983730 cites W2133626948 @default.
- W2126983730 cites W2133752903 @default.
- W2126983730 cites W2139997116 @default.
- W2126983730 cites W2141075017 @default.
- W2126983730 cites W2149507322 @default.
- W2126983730 cites W2156240186 @default.
- W2126983730 cites W2156319159 @default.
- W2126983730 cites W2159850658 @default.
- W2126983730 cites W2162641775 @default.
- W2126983730 cites W2163816695 @default.
- W2126983730 cites W2166715253 @default.
- W2126983730 cites W2167088794 @default.
- W2126983730 cites W2168793010 @default.
- W2126983730 cites W2169600757 @default.
- W2126983730 cites W2170352813 @default.
- W2126983730 cites W2316241950 @default.
- W2126983730 cites W2764618889 @default.
- W2126983730 cites W952516887 @default.
- W2126983730 doi "https://doi.org/10.1016/j.ecolmodel.2005.01.030" @default.
- W2126983730 hasPublicationYear "2005" @default.
- W2126983730 type Work @default.
- W2126983730 sameAs 2126983730 @default.
- W2126983730 citedByCount "442" @default.
- W2126983730 countsByYear W21269837302012 @default.
- W2126983730 countsByYear W21269837302013 @default.
- W2126983730 countsByYear W21269837302014 @default.
- W2126983730 countsByYear W21269837302015 @default.
- W2126983730 countsByYear W21269837302016 @default.
- W2126983730 countsByYear W21269837302017 @default.
- W2126983730 countsByYear W21269837302018 @default.
- W2126983730 countsByYear W21269837302019 @default.
- W2126983730 countsByYear W21269837302020 @default.
- W2126983730 countsByYear W21269837302021 @default.
- W2126983730 countsByYear W21269837302022 @default.
- W2126983730 countsByYear W21269837302023 @default.
- W2126983730 crossrefType "journal-article" @default.
- W2126983730 hasAuthorship W2126983730A5041147164 @default.
- W2126983730 hasAuthorship W2126983730A5062199956 @default.
- W2126983730 hasAuthorship W2126983730A5064872490 @default.
- W2126983730 hasConcept C111368507 @default.
- W2126983730 hasConcept C127313418 @default.
- W2126983730 hasConcept C132124917 @default.
- W2126983730 hasConcept C132651083 @default.
- W2126983730 hasConcept C148043351 @default.
- W2126983730 hasConcept C159985019 @default.
- W2126983730 hasConcept C185933670 @default.
- W2126983730 hasConcept C18903297 @default.
- W2126983730 hasConcept C192562407 @default.
- W2126983730 hasConcept C204323151 @default.