Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127008962> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2127008962 endingPage "i294" @default.
- W2127008962 startingPage "i286" @default.
- W2127008962 abstract "Abstract Motivation: Tagging gene and gene product mentions in scientific text is an important initial step of literature mining. In this article, we describe in detail our gene mention tagger participated in BioCreative 2 challenge and analyze what contributes to its good performance. Our tagger is based on the conditional random fields model (CRF), the most prevailing method for the gene mention tagging task in BioCreative 2. Our tagger is interesting because it accomplished the highest F-scores among CRF-based methods and second over all. Moreover, we obtained our results by mostly applying open source packages, making it easy to duplicate our results. Results: We first describe in detail how we developed our CRF-based tagger. We designed a very high dimensional feature set that includes most of information that may be relevant. We trained bi-directional CRF models with the same set of features, one applies forward parsing and the other backward, and integrated two models based on the output scores and dictionary filtering. One of the most prominent factors that contributes to the good performance of our tagger is the integration of an additional backward parsing model. However, from the definition of CRF, it appears that a CRF model is symmetric and bi-directional parsing models will produce the same results. We show that due to different feature settings, a CRF model can be asymmetric and the feature setting for our tagger in BioCreative 2 not only produces different results but also gives backward parsing models slight but constant advantage over forward parsing model. To fully explore the potential of integrating bi-directional parsing models, we applied different asymmetric feature settings to generate many bi-directional parsing models and integrate them based on the output scores. Experimental results show that this integrated model can achieve even higher F-score solely based on the training corpus for gene mention tagging. Availability: Data sets, programs and an on-line service of our gene mention tagger can be accessed at http://aiia.iis.sinica.edu.tw/biocreative2.htm Contact: chunnan@iis.sinica.edu.tw" @default.
- W2127008962 created "2016-06-24" @default.
- W2127008962 creator A5014838804 @default.
- W2127008962 creator A5021101384 @default.
- W2127008962 creator A5021355026 @default.
- W2127008962 creator A5027210768 @default.
- W2127008962 creator A5031768968 @default.
- W2127008962 creator A5040580626 @default.
- W2127008962 date "2008-07-01" @default.
- W2127008962 modified "2023-09-28" @default.
- W2127008962 title "Integrating high dimensional bi-directional parsing models for gene mention tagging" @default.
- W2127008962 cites W192665053 @default.
- W2127008962 cites W1988995507 @default.
- W2127008962 cites W2001792610 @default.
- W2127008962 cites W2117479478 @default.
- W2127008962 cites W2124767974 @default.
- W2127008962 cites W2135912801 @default.
- W2127008962 cites W2151296343 @default.
- W2127008962 cites W2156515921 @default.
- W2127008962 cites W2161905890 @default.
- W2127008962 cites W2169392521 @default.
- W2127008962 cites W4293775970 @default.
- W2127008962 doi "https://doi.org/10.1093/bioinformatics/btn183" @default.
- W2127008962 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2718659" @default.
- W2127008962 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18586726" @default.
- W2127008962 hasPublicationYear "2008" @default.
- W2127008962 type Work @default.
- W2127008962 sameAs 2127008962 @default.
- W2127008962 citedByCount "79" @default.
- W2127008962 countsByYear W21270089622012 @default.
- W2127008962 countsByYear W21270089622013 @default.
- W2127008962 countsByYear W21270089622014 @default.
- W2127008962 countsByYear W21270089622015 @default.
- W2127008962 countsByYear W21270089622016 @default.
- W2127008962 countsByYear W21270089622017 @default.
- W2127008962 countsByYear W21270089622018 @default.
- W2127008962 countsByYear W21270089622022 @default.
- W2127008962 crossrefType "journal-article" @default.
- W2127008962 hasAuthorship W2127008962A5014838804 @default.
- W2127008962 hasAuthorship W2127008962A5021101384 @default.
- W2127008962 hasAuthorship W2127008962A5021355026 @default.
- W2127008962 hasAuthorship W2127008962A5027210768 @default.
- W2127008962 hasAuthorship W2127008962A5031768968 @default.
- W2127008962 hasAuthorship W2127008962A5040580626 @default.
- W2127008962 hasBestOaLocation W21270089622 @default.
- W2127008962 hasConcept C119857082 @default.
- W2127008962 hasConcept C138885662 @default.
- W2127008962 hasConcept C148524875 @default.
- W2127008962 hasConcept C152565575 @default.
- W2127008962 hasConcept C154945302 @default.
- W2127008962 hasConcept C177264268 @default.
- W2127008962 hasConcept C186644900 @default.
- W2127008962 hasConcept C199360897 @default.
- W2127008962 hasConcept C204321447 @default.
- W2127008962 hasConcept C2776401178 @default.
- W2127008962 hasConcept C41008148 @default.
- W2127008962 hasConcept C41895202 @default.
- W2127008962 hasConceptScore W2127008962C119857082 @default.
- W2127008962 hasConceptScore W2127008962C138885662 @default.
- W2127008962 hasConceptScore W2127008962C148524875 @default.
- W2127008962 hasConceptScore W2127008962C152565575 @default.
- W2127008962 hasConceptScore W2127008962C154945302 @default.
- W2127008962 hasConceptScore W2127008962C177264268 @default.
- W2127008962 hasConceptScore W2127008962C186644900 @default.
- W2127008962 hasConceptScore W2127008962C199360897 @default.
- W2127008962 hasConceptScore W2127008962C204321447 @default.
- W2127008962 hasConceptScore W2127008962C2776401178 @default.
- W2127008962 hasConceptScore W2127008962C41008148 @default.
- W2127008962 hasConceptScore W2127008962C41895202 @default.
- W2127008962 hasIssue "13" @default.
- W2127008962 hasLocation W21270089621 @default.
- W2127008962 hasLocation W21270089622 @default.
- W2127008962 hasLocation W21270089623 @default.
- W2127008962 hasLocation W21270089624 @default.
- W2127008962 hasOpenAccess W2127008962 @default.
- W2127008962 hasPrimaryLocation W21270089621 @default.
- W2127008962 hasRelatedWork W1590308178 @default.
- W2127008962 hasRelatedWork W2078244995 @default.
- W2127008962 hasRelatedWork W2167662847 @default.
- W2127008962 hasRelatedWork W2293457016 @default.
- W2127008962 hasRelatedWork W2369308426 @default.
- W2127008962 hasRelatedWork W2502722637 @default.
- W2127008962 hasRelatedWork W2789919619 @default.
- W2127008962 hasRelatedWork W2947903144 @default.
- W2127008962 hasRelatedWork W2977842567 @default.
- W2127008962 hasRelatedWork W1551406738 @default.
- W2127008962 hasVolume "24" @default.
- W2127008962 isParatext "false" @default.
- W2127008962 isRetracted "false" @default.
- W2127008962 magId "2127008962" @default.
- W2127008962 workType "article" @default.