Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127013693> ?p ?o ?g. }
- W2127013693 endingPage "15796" @default.
- W2127013693 startingPage "15785" @default.
- W2127013693 abstract "Three new Dy complexes have been prepared according to a complex-as-ligand strategy. Structural determinations indicate that the central Dy ion is surrounded by two LZn units (L2− is the di-deprotonated form of the N2O2 compartmental N,N′-2,2-dimethylpropylenedi(3-methoxysalicylideneiminato) Schiff base. The Dy ions are nonacoordinate to eight oxygen atoms from the two L ligands and to a water molecule. The Zn ions are pentacoordinate in all cases, linked to the N2O2 atoms from L, and the apical position of the Zn coordination sphere is occupied by a water molecule or bromide or chloride ions. These resulting complexes, formulated (LZnX)-Dy-(LZnX), are tricationic with X=H2O and monocationic with X=Br or Cl. They behave as field-free single-molecule magnets (SMMs) with effective energy barriers (Ueff) for the reversal of the magnetization of 96.9(6) K with τ0=2.4×10−7 s, 146.8(5) K with τ0=9.2×10−8 s, and 146.1(10) K with τ0=9.9×10−8 s for compounds with ZnOH2, ZnBr, and ZnCl motifs, respectively. The Cole–Cole plots exhibit semicircular shapes with α parameters in the range of 0.19 to 0.29, which suggests multiple relaxation processes. Under a dc applied magnetic field of 1000 Oe, the quantum tunneling of magnetization (QTM) is partly or fully suppressed and the energy barriers increase to Ueff=128.6(5) K and τ0=1.8×10−8 s for 1, Ueff=214.7 K and τ0=9.8×10−9 s for 2, and Ueff=202.4 K and τ0=1.5×10−8 s for 3. The two pairs of largely negatively charged phenoxido oxygen atoms with short DyO bonds are positioned at opposite sides of the Dy3+ ion, which thus creates a strong crystal field that stabilizes the axial MJ=±15/2 doublet as the ground Kramers doublet. Although the compound with the ZnOH2 motifs possesses the larger negative charges on the phenolate oxygen atoms, as confirmed by using DFT calculations, it exhibits the larger distortions of the DyO9 coordination polyhedron from ideal geometries and a smaller Ueff value. Ab initio calculations support the easy-axis anisotropy of the ground Kramers doublet and predict zero-field SMM behavior through Orbach and TA-QTM relaxations via the first excited Kramers doublet, which leads to large energy barriers. In accordance with the experimental results, ab initio calculations have also shown that, compared with water, the peripheral halide ligands coordinated to the Zn2+ ions increase the barrier height when the distortions of the DyO9 have a negative effect. All the complexes exhibit metal-centered luminescence after excitation into the UV π–π* absorption band of ligand L2− at λ=335 nm, which results in the appearance of the characteristic DyIII (4F9/2→6HJ/2; J=15/2, 13/2) emission bands in the visible region." @default.
- W2127013693 created "2016-06-24" @default.
- W2127013693 creator A5020817565 @default.
- W2127013693 creator A5045958615 @default.
- W2127013693 creator A5054818199 @default.
- W2127013693 creator A5065804999 @default.
- W2127013693 creator A5079780490 @default.
- W2127013693 creator A5083533877 @default.
- W2127013693 creator A5086729566 @default.
- W2127013693 date "2015-09-11" @default.
- W2127013693 modified "2023-10-14" @default.
- W2127013693 title "Analysis of the Role of Peripheral Ligands Coordinated to Zn<sup>II</sup>in Enhancing the Energy Barrier in Luminescent Linear Trinuclear Zn-Dy-Zn Single-Molecule Magnets" @default.
- W2127013693 cites W1823409394 @default.
- W2127013693 cites W1970881901 @default.
- W2127013693 cites W1972598126 @default.
- W2127013693 cites W1973081432 @default.
- W2127013693 cites W1975434096 @default.
- W2127013693 cites W1978296916 @default.
- W2127013693 cites W1978964278 @default.
- W2127013693 cites W1980049034 @default.
- W2127013693 cites W1983203578 @default.
- W2127013693 cites W1983466095 @default.
- W2127013693 cites W1983645339 @default.
- W2127013693 cites W1984044268 @default.
- W2127013693 cites W1985741378 @default.
- W2127013693 cites W1994325879 @default.
- W2127013693 cites W1997436070 @default.
- W2127013693 cites W1998873617 @default.
- W2127013693 cites W2001853122 @default.
- W2127013693 cites W2003309734 @default.
- W2127013693 cites W2006646638 @default.
- W2127013693 cites W2007298365 @default.
- W2127013693 cites W2009046603 @default.
- W2127013693 cites W2011199556 @default.
- W2127013693 cites W2016011173 @default.
- W2127013693 cites W2023071471 @default.
- W2127013693 cites W2023668900 @default.
- W2127013693 cites W2024292635 @default.
- W2127013693 cites W2028915285 @default.
- W2127013693 cites W2031099933 @default.
- W2127013693 cites W2031631007 @default.
- W2127013693 cites W2032357231 @default.
- W2127013693 cites W2033673475 @default.
- W2127013693 cites W2034706873 @default.
- W2127013693 cites W2045238539 @default.
- W2127013693 cites W2047119889 @default.
- W2127013693 cites W2052628183 @default.
- W2127013693 cites W2054125484 @default.
- W2127013693 cites W2058210956 @default.
- W2127013693 cites W2073144088 @default.
- W2127013693 cites W2077520792 @default.
- W2127013693 cites W2078987963 @default.
- W2127013693 cites W2079604487 @default.
- W2127013693 cites W2081347532 @default.
- W2127013693 cites W2087266110 @default.
- W2127013693 cites W2092467983 @default.
- W2127013693 cites W2094943176 @default.
- W2127013693 cites W2100113961 @default.
- W2127013693 cites W2102938440 @default.
- W2127013693 cites W2103827051 @default.
- W2127013693 cites W2110081012 @default.
- W2127013693 cites W2111520969 @default.
- W2127013693 cites W2115075195 @default.
- W2127013693 cites W2116195309 @default.
- W2127013693 cites W2118440627 @default.
- W2127013693 cites W2126534026 @default.
- W2127013693 cites W2132781288 @default.
- W2127013693 cites W2143402290 @default.
- W2127013693 cites W2143803583 @default.
- W2127013693 cites W2145776938 @default.
- W2127013693 cites W2152590501 @default.
- W2127013693 cites W2158019178 @default.
- W2127013693 cites W2158391865 @default.
- W2127013693 cites W2161851973 @default.
- W2127013693 cites W2164845223 @default.
- W2127013693 cites W2165455378 @default.
- W2127013693 cites W2165528549 @default.
- W2127013693 cites W2312573082 @default.
- W2127013693 cites W2312719569 @default.
- W2127013693 cites W2313304868 @default.
- W2127013693 cites W2320706634 @default.
- W2127013693 cites W2330411430 @default.
- W2127013693 cites W2332402427 @default.
- W2127013693 cites W2409817905 @default.
- W2127013693 cites W2501601243 @default.
- W2127013693 cites W3101741534 @default.
- W2127013693 cites W3202120155 @default.
- W2127013693 cites W4230021123 @default.
- W2127013693 cites W4231107321 @default.
- W2127013693 doi "https://doi.org/10.1002/chem.201501500" @default.
- W2127013693 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26361252" @default.
- W2127013693 hasPublicationYear "2015" @default.
- W2127013693 type Work @default.
- W2127013693 sameAs 2127013693 @default.
- W2127013693 citedByCount "76" @default.
- W2127013693 countsByYear W21270136932016 @default.
- W2127013693 countsByYear W21270136932017 @default.
- W2127013693 countsByYear W21270136932018 @default.