Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127082287> ?p ?o ?g. }
- W2127082287 endingPage "1338" @default.
- W2127082287 startingPage "1315" @default.
- W2127082287 abstract "An ensemble is a group of learning models that jointly solve a problem. However, the ensembles generated by existing techniques are sometimes unnecessarily large, which can lead to extra memory usage, computational costs, and occasional decreases in effectiveness. The purpose of ensemble pruning is to search for a good subset of ensemble members that performs as well as, or better than, the original ensemble. This subset selection problem is a combinatorial optimization problem and thus finding the exact optimal solution is computationally prohibitive. Various heuristic methods have been developed to obtain an approximate solution. However, most of the existing heuristics use simple greedy search as the optimization method, which lacks either theoretical or empirical quality guarantees. In this paper, the ensemble subset selection problem is formulated as a quadratic integer programming problem. By applying semi-definite programming (SDP) as a solution technique, we are able to get better approximate solutions. Computational experiments show that this SDP-based pruning algorithm outperforms other heuristics in the literature. Its application in a classifier-sharing study also demonstrates the effectiveness of the method." @default.
- W2127082287 created "2016-06-24" @default.
- W2127082287 creator A5002663715 @default.
- W2127082287 creator A5031033430 @default.
- W2127082287 creator A5044544424 @default.
- W2127082287 date "2006-12-01" @default.
- W2127082287 modified "2023-10-02" @default.
- W2127082287 title "Ensemble Pruning Via Semi-definite Programming" @default.
- W2127082287 cites W1504694836 @default.
- W2127082287 cites W1562197959 @default.
- W2127082287 cites W1578080815 @default.
- W2127082287 cites W1605688901 @default.
- W2127082287 cites W1622484071 @default.
- W2127082287 cites W1800271513 @default.
- W2127082287 cites W1840993646 @default.
- W2127082287 cites W1899157803 @default.
- W2127082287 cites W1980264541 @default.
- W2127082287 cites W1985123706 @default.
- W2127082287 cites W1990079212 @default.
- W2127082287 cites W2009727399 @default.
- W2127082287 cites W2015956198 @default.
- W2127082287 cites W2017578526 @default.
- W2127082287 cites W2032321507 @default.
- W2127082287 cites W2034543148 @default.
- W2127082287 cites W2073040595 @default.
- W2127082287 cites W2084812512 @default.
- W2127082287 cites W2097303721 @default.
- W2127082287 cites W2097554207 @default.
- W2127082287 cites W2099968818 @default.
- W2127082287 cites W2100805904 @default.
- W2127082287 cites W2106332767 @default.
- W2127082287 cites W2112076978 @default.
- W2127082287 cites W2113242816 @default.
- W2127082287 cites W2120306559 @default.
- W2127082287 cites W2125055259 @default.
- W2127082287 cites W2128073546 @default.
- W2127082287 cites W2135293965 @default.
- W2127082287 cites W2143075842 @default.
- W2127082287 cites W2145295623 @default.
- W2127082287 cites W2150290224 @default.
- W2127082287 cites W2160150610 @default.
- W2127082287 cites W28412257 @default.
- W2127082287 cites W2911964244 @default.
- W2127082287 cites W2912934387 @default.
- W2127082287 cites W2913340405 @default.
- W2127082287 cites W2982720039 @default.
- W2127082287 cites W2161390635 @default.
- W2127082287 doi "https://doi.org/10.5555/1248547.1248595" @default.
- W2127082287 hasPublicationYear "2006" @default.
- W2127082287 type Work @default.
- W2127082287 sameAs 2127082287 @default.
- W2127082287 citedByCount "60" @default.
- W2127082287 countsByYear W21270822872012 @default.
- W2127082287 countsByYear W21270822872013 @default.
- W2127082287 countsByYear W21270822872014 @default.
- W2127082287 countsByYear W21270822872015 @default.
- W2127082287 countsByYear W21270822872016 @default.
- W2127082287 countsByYear W21270822872017 @default.
- W2127082287 countsByYear W21270822872018 @default.
- W2127082287 countsByYear W21270822872019 @default.
- W2127082287 countsByYear W21270822872020 @default.
- W2127082287 countsByYear W21270822872021 @default.
- W2127082287 crossrefType "journal-article" @default.
- W2127082287 hasAuthorship W2127082287A5002663715 @default.
- W2127082287 hasAuthorship W2127082287A5031033430 @default.
- W2127082287 hasAuthorship W2127082287A5044544424 @default.
- W2127082287 hasConcept C108010975 @default.
- W2127082287 hasConcept C11413529 @default.
- W2127082287 hasConcept C119857082 @default.
- W2127082287 hasConcept C126255220 @default.
- W2127082287 hasConcept C127705205 @default.
- W2127082287 hasConcept C154945302 @default.
- W2127082287 hasConcept C173801870 @default.
- W2127082287 hasConcept C33923547 @default.
- W2127082287 hasConcept C41008148 @default.
- W2127082287 hasConcept C45942800 @default.
- W2127082287 hasConcept C56086750 @default.
- W2127082287 hasConcept C6557445 @default.
- W2127082287 hasConcept C86803240 @default.
- W2127082287 hasConceptScore W2127082287C108010975 @default.
- W2127082287 hasConceptScore W2127082287C11413529 @default.
- W2127082287 hasConceptScore W2127082287C119857082 @default.
- W2127082287 hasConceptScore W2127082287C126255220 @default.
- W2127082287 hasConceptScore W2127082287C127705205 @default.
- W2127082287 hasConceptScore W2127082287C154945302 @default.
- W2127082287 hasConceptScore W2127082287C173801870 @default.
- W2127082287 hasConceptScore W2127082287C33923547 @default.
- W2127082287 hasConceptScore W2127082287C41008148 @default.
- W2127082287 hasConceptScore W2127082287C45942800 @default.
- W2127082287 hasConceptScore W2127082287C56086750 @default.
- W2127082287 hasConceptScore W2127082287C6557445 @default.
- W2127082287 hasConceptScore W2127082287C86803240 @default.
- W2127082287 hasIssue "48" @default.
- W2127082287 hasLocation W21270822871 @default.
- W2127082287 hasOpenAccess W2127082287 @default.
- W2127082287 hasPrimaryLocation W21270822871 @default.
- W2127082287 hasRelatedWork W1534477342 @default.
- W2127082287 hasRelatedWork W1562197959 @default.