Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127169660> ?p ?o ?g. }
- W2127169660 endingPage "38" @default.
- W2127169660 startingPage "27" @default.
- W2127169660 abstract "Hurlbert divides experimental ecologist into ‘those who do not see any need for dispersion (of replicated treatments and controls), and those who do recognize its importance and take whatever measures are necessary to achieve a good dose of it’. Experimental ecologists could also be divided into those who do not see any problems with sacrificing spatial and temporal scales in order to obtain replication, and those who understand that appropriate scale must always have priority over replication. If an experiment is conducted in a spatial or temporal scale, where the predictions of contesting hypotheses are convergent or ambiguous, no amount of technical impeccability can make the work instructive. Conversely, replication can always be obtained afterwards, by conducting more experiments with basically similar design in different areas and by using meta-analysis. This approach even reduces the sampling bias obtained if resources are allocated to a small number of well-replicated experiments. For a strict advocate of the hypothetico-deductive method, replication is unnecessary even as a matter of principle, unless the predicted response is so weak that random background noise is a plausible excuse for a discrepancy between predictions and results. By definition, a prediction is an ‘all-statement’, referring to all systems within a well-defined category. What applies to all must apply to any. Hence, choosing two systems and assigning them randomly to a treatment and a control is normally an adequate design for a deductive experiment. The strength of such experiments depends on the firmness of the predictions and their a priori probability of corroboration. Replication is but one of many ways of reducing this probability. Whether the experiment is replicated or not, inferential statistics should always be used, to enable the reader to judge how well the apparent patterns in samples reflect real patterns in statistical populations. The concept ‘pseudoreplication’ amounts to entirely unwarranted stigmatization of a reasonable way to test predictions referring to large-scale systems." @default.
- W2127169660 created "2016-06-24" @default.
- W2127169660 creator A5014787639 @default.
- W2127169660 date "2001-07-01" @default.
- W2127169660 modified "2023-10-14" @default.
- W2127169660 title "Logic of experiments in ecology: is pseudoreplication a pseudoissue?" @default.
- W2127169660 cites W1498108014 @default.
- W2127169660 cites W1574424671 @default.
- W2127169660 cites W1582174699 @default.
- W2127169660 cites W1595503624 @default.
- W2127169660 cites W1632910517 @default.
- W2127169660 cites W1973688100 @default.
- W2127169660 cites W1975486399 @default.
- W2127169660 cites W1976627538 @default.
- W2127169660 cites W1977062359 @default.
- W2127169660 cites W1979532728 @default.
- W2127169660 cites W1981373457 @default.
- W2127169660 cites W1988997784 @default.
- W2127169660 cites W1993340137 @default.
- W2127169660 cites W1996670866 @default.
- W2127169660 cites W1997086647 @default.
- W2127169660 cites W2002754101 @default.
- W2127169660 cites W2008019499 @default.
- W2127169660 cites W2009222203 @default.
- W2127169660 cites W2018177009 @default.
- W2127169660 cites W2018243204 @default.
- W2127169660 cites W2019639116 @default.
- W2127169660 cites W2021270045 @default.
- W2127169660 cites W2024154261 @default.
- W2127169660 cites W2029070458 @default.
- W2127169660 cites W2030133736 @default.
- W2127169660 cites W2033493177 @default.
- W2127169660 cites W2036003817 @default.
- W2127169660 cites W2054637019 @default.
- W2127169660 cites W2056931625 @default.
- W2127169660 cites W2057041211 @default.
- W2127169660 cites W2058757045 @default.
- W2127169660 cites W2060852353 @default.
- W2127169660 cites W2063846066 @default.
- W2127169660 cites W2063995298 @default.
- W2127169660 cites W2066093210 @default.
- W2127169660 cites W2068349998 @default.
- W2127169660 cites W2070010102 @default.
- W2127169660 cites W2072959381 @default.
- W2127169660 cites W2073984231 @default.
- W2127169660 cites W2074801826 @default.
- W2127169660 cites W2076098400 @default.
- W2127169660 cites W2079710893 @default.
- W2127169660 cites W2082748793 @default.
- W2127169660 cites W2086053402 @default.
- W2127169660 cites W2087671131 @default.
- W2127169660 cites W2089455746 @default.
- W2127169660 cites W2092590782 @default.
- W2127169660 cites W2094216431 @default.
- W2127169660 cites W2100548335 @default.
- W2127169660 cites W2106131771 @default.
- W2127169660 cites W2113871988 @default.
- W2127169660 cites W2119669613 @default.
- W2127169660 cites W2126549349 @default.
- W2127169660 cites W2139156166 @default.
- W2127169660 cites W2157258388 @default.
- W2127169660 cites W2161509801 @default.
- W2127169660 cites W2165911766 @default.
- W2127169660 cites W220997350 @default.
- W2127169660 cites W2282448634 @default.
- W2127169660 cites W2314980752 @default.
- W2127169660 cites W2319524478 @default.
- W2127169660 cites W2319935544 @default.
- W2127169660 cites W2324608928 @default.
- W2127169660 cites W2328411831 @default.
- W2127169660 cites W2331118965 @default.
- W2127169660 cites W2334256381 @default.
- W2127169660 cites W2467016098 @default.
- W2127169660 cites W2753533763 @default.
- W2127169660 cites W2797842852 @default.
- W2127169660 cites W656678068 @default.
- W2127169660 cites W75209568 @default.
- W2127169660 cites W766338931 @default.
- W2127169660 cites W2155369452 @default.
- W2127169660 cites W2990368759 @default.
- W2127169660 doi "https://doi.org/10.1034/j.1600-0706.2001.11311.x" @default.
- W2127169660 hasPublicationYear "2001" @default.
- W2127169660 type Work @default.
- W2127169660 sameAs 2127169660 @default.
- W2127169660 citedByCount "494" @default.
- W2127169660 countsByYear W21271696602012 @default.
- W2127169660 countsByYear W21271696602013 @default.
- W2127169660 countsByYear W21271696602014 @default.
- W2127169660 countsByYear W21271696602015 @default.
- W2127169660 countsByYear W21271696602016 @default.
- W2127169660 countsByYear W21271696602017 @default.
- W2127169660 countsByYear W21271696602018 @default.
- W2127169660 countsByYear W21271696602019 @default.
- W2127169660 countsByYear W21271696602020 @default.
- W2127169660 countsByYear W21271696602021 @default.
- W2127169660 countsByYear W21271696602022 @default.
- W2127169660 countsByYear W21271696602023 @default.
- W2127169660 crossrefType "journal-article" @default.