Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127179243> ?p ?o ?g. }
- W2127179243 endingPage "98" @default.
- W2127179243 startingPage "59" @default.
- W2127179243 abstract "Applications of non-linear kernel support vector machines (SVMs) to large data sets is seriously hampered by its excessive training time. We propose a modification, called the approximate extreme points support vector machine (AESVM), that is aimed at overcoming this burden. Our approach relies on conducting the SVM optimization over a carefully selected subset, called the representative set, of the training data set. We present analytical results that indicate the similarity of AESVM and SVM solutions. A linear time algorithm based on convex hulls and extreme points is used to compute the representative set in kernel space. Extensive computational experiments on nine data sets compared AESVM to LIBSVM (Chang and Lin, 2011), CVM (Tsang et al., 2005), BVM (Tsang et al., 2007), LASVM (Bordes et al., 2005), SVMperf (Joachims and Yu, 2009), and the random features method (Rahimi and Recht, 2007). Our AESVM implementation was found to train much faster than the other methods, while its classification accuracy was similar to that of LIBSVM in all cases. In particular, for a seizure detection data set, AESVM training was almost 500 times faster than LIBSVM and LASVM and 20 times faster than CVM and BVM. Additionally, AESVM also gave competitively fast classification times." @default.
- W2127179243 created "2016-06-24" @default.
- W2127179243 creator A5001483230 @default.
- W2127179243 creator A5004650986 @default.
- W2127179243 creator A5044441612 @default.
- W2127179243 date "2014-01-01" @default.
- W2127179243 modified "2023-10-01" @default.
- W2127179243 title "Fast SVM training using approximate extreme points" @default.
- W2127179243 cites W1480629002 @default.
- W2127179243 cites W1512098439 @default.
- W2127179243 cites W1560724230 @default.
- W2127179243 cites W1574862351 @default.
- W2127179243 cites W1583456686 @default.
- W2127179243 cites W1604585277 @default.
- W2127179243 cites W1621799579 @default.
- W2127179243 cites W1689099703 @default.
- W2127179243 cites W1965059296 @default.
- W2127179243 cites W1970088130 @default.
- W2127179243 cites W1985142965 @default.
- W2127179243 cites W1996641400 @default.
- W2127179243 cites W2005622485 @default.
- W2127179243 cites W2030811966 @default.
- W2127179243 cites W2035720976 @default.
- W2127179243 cites W2064853684 @default.
- W2127179243 cites W2068405010 @default.
- W2127179243 cites W2069808690 @default.
- W2127179243 cites W2089717566 @default.
- W2127179243 cites W2091825929 @default.
- W2127179243 cites W2099940443 @default.
- W2127179243 cites W2105867876 @default.
- W2127179243 cites W2109706083 @default.
- W2127179243 cites W2112530506 @default.
- W2127179243 cites W2112796928 @default.
- W2127179243 cites W2114515438 @default.
- W2127179243 cites W2115364117 @default.
- W2127179243 cites W2115694019 @default.
- W2127179243 cites W2118585731 @default.
- W2127179243 cites W2124351082 @default.
- W2127179243 cites W2125126592 @default.
- W2127179243 cites W2125993116 @default.
- W2127179243 cites W2133296809 @default.
- W2127179243 cites W2135106139 @default.
- W2127179243 cites W2137557016 @default.
- W2127179243 cites W2139451965 @default.
- W2127179243 cites W2144902422 @default.
- W2127179243 cites W2153635508 @default.
- W2127179243 cites W2155319834 @default.
- W2127179243 cites W2160840682 @default.
- W2127179243 cites W2161920802 @default.
- W2127179243 cites W2165401139 @default.
- W2127179243 cites W2165966284 @default.
- W2127179243 cites W2296319761 @default.
- W2127179243 doi "https://doi.org/10.5555/2627435.2627437" @default.
- W2127179243 hasPublicationYear "2014" @default.
- W2127179243 type Work @default.
- W2127179243 sameAs 2127179243 @default.
- W2127179243 citedByCount "14" @default.
- W2127179243 countsByYear W21271792432013 @default.
- W2127179243 countsByYear W21271792432014 @default.
- W2127179243 countsByYear W21271792432015 @default.
- W2127179243 countsByYear W21271792432016 @default.
- W2127179243 countsByYear W21271792432017 @default.
- W2127179243 countsByYear W21271792432018 @default.
- W2127179243 countsByYear W21271792432019 @default.
- W2127179243 countsByYear W21271792432020 @default.
- W2127179243 crossrefType "journal-article" @default.
- W2127179243 hasAuthorship W2127179243A5001483230 @default.
- W2127179243 hasAuthorship W2127179243A5004650986 @default.
- W2127179243 hasAuthorship W2127179243A5044441612 @default.
- W2127179243 hasConcept C103278499 @default.
- W2127179243 hasConcept C11413529 @default.
- W2127179243 hasConcept C114614502 @default.
- W2127179243 hasConcept C115961682 @default.
- W2127179243 hasConcept C119857082 @default.
- W2127179243 hasConcept C122280245 @default.
- W2127179243 hasConcept C12267149 @default.
- W2127179243 hasConcept C124101348 @default.
- W2127179243 hasConcept C153180895 @default.
- W2127179243 hasConcept C154945302 @default.
- W2127179243 hasConcept C177264268 @default.
- W2127179243 hasConcept C199360897 @default.
- W2127179243 hasConcept C21080849 @default.
- W2127179243 hasConcept C33923547 @default.
- W2127179243 hasConcept C39847760 @default.
- W2127179243 hasConcept C41008148 @default.
- W2127179243 hasConcept C51632099 @default.
- W2127179243 hasConcept C58489278 @default.
- W2127179243 hasConcept C74193536 @default.
- W2127179243 hasConceptScore W2127179243C103278499 @default.
- W2127179243 hasConceptScore W2127179243C11413529 @default.
- W2127179243 hasConceptScore W2127179243C114614502 @default.
- W2127179243 hasConceptScore W2127179243C115961682 @default.
- W2127179243 hasConceptScore W2127179243C119857082 @default.
- W2127179243 hasConceptScore W2127179243C122280245 @default.
- W2127179243 hasConceptScore W2127179243C12267149 @default.
- W2127179243 hasConceptScore W2127179243C124101348 @default.
- W2127179243 hasConceptScore W2127179243C153180895 @default.
- W2127179243 hasConceptScore W2127179243C154945302 @default.