Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127273504> ?p ?o ?g. }
- W2127273504 abstract "Support vector data description (SVDD) is a powerful kernel method that has been commonly used for novelty detection. While its quadratic programming formulation has the important computational advantage of avoiding the problem of local minimum, this has a runtime complexity of O(N/sup 3/), where N is the number of training patterns. It thus becomes prohibitive when the data set is large. Inspired from the use of core-sets in approximating the minimum enclosing ball problem in computational geometry, we propose An approximation method that allows SVDD to scale better to larger data sets. Most importantly, the proposed method has a running time that is only linear in N. Experimental results on two large real-world data sets demonstrate that the proposed method can handle data sets that are much larger than those that can be handled by standard SVDD packages, while its approximate solution still attains equally good, or sometimes even better, novelty detection performance." @default.
- W2127273504 created "2016-06-24" @default.
- W2127273504 creator A5021751767 @default.
- W2127273504 creator A5024101828 @default.
- W2127273504 creator A5070273088 @default.
- W2127273504 date "2005-02-22" @default.
- W2127273504 modified "2023-09-22" @default.
- W2127273504 title "Scaling up support vector data description by using core-sets" @default.
- W2127273504 cites W13422762 @default.
- W2127273504 cites W1499399937 @default.
- W2127273504 cites W1512098439 @default.
- W2127273504 cites W1601740268 @default.
- W2127273504 cites W1977263019 @default.
- W2127273504 cites W2029494882 @default.
- W2127273504 cites W2055294489 @default.
- W2127273504 cites W2059651397 @default.
- W2127273504 cites W2095345875 @default.
- W2127273504 cites W2100294832 @default.
- W2127273504 cites W2105497548 @default.
- W2127273504 cites W2108067579 @default.
- W2127273504 cites W2125951032 @default.
- W2127273504 cites W2126652588 @default.
- W2127273504 cites W2132870739 @default.
- W2127273504 cites W2148603752 @default.
- W2127273504 cites W2153635508 @default.
- W2127273504 cites W2155653793 @default.
- W2127273504 cites W3119651796 @default.
- W2127273504 cites W84374482 @default.
- W2127273504 doi "https://doi.org/10.1109/ijcnn.2004.1379943" @default.
- W2127273504 hasPublicationYear "2005" @default.
- W2127273504 type Work @default.
- W2127273504 sameAs 2127273504 @default.
- W2127273504 citedByCount "20" @default.
- W2127273504 countsByYear W21272735042012 @default.
- W2127273504 countsByYear W21272735042013 @default.
- W2127273504 countsByYear W21272735042014 @default.
- W2127273504 countsByYear W21272735042016 @default.
- W2127273504 countsByYear W21272735042018 @default.
- W2127273504 countsByYear W21272735042019 @default.
- W2127273504 countsByYear W21272735042022 @default.
- W2127273504 crossrefType "proceedings-article" @default.
- W2127273504 hasAuthorship W2127273504A5021751767 @default.
- W2127273504 hasAuthorship W2127273504A5024101828 @default.
- W2127273504 hasAuthorship W2127273504A5070273088 @default.
- W2127273504 hasBestOaLocation W21272735042 @default.
- W2127273504 hasConcept C11413529 @default.
- W2127273504 hasConcept C118615104 @default.
- W2127273504 hasConcept C122280245 @default.
- W2127273504 hasConcept C12267149 @default.
- W2127273504 hasConcept C126255220 @default.
- W2127273504 hasConcept C138885662 @default.
- W2127273504 hasConcept C154945302 @default.
- W2127273504 hasConcept C177264268 @default.
- W2127273504 hasConcept C179799912 @default.
- W2127273504 hasConcept C199360897 @default.
- W2127273504 hasConcept C2164484 @default.
- W2127273504 hasConcept C2524010 @default.
- W2127273504 hasConcept C27206212 @default.
- W2127273504 hasConcept C2778738651 @default.
- W2127273504 hasConcept C2778924833 @default.
- W2127273504 hasConcept C33923547 @default.
- W2127273504 hasConcept C41008148 @default.
- W2127273504 hasConcept C58489278 @default.
- W2127273504 hasConcept C74193536 @default.
- W2127273504 hasConcept C76155785 @default.
- W2127273504 hasConcept C81845259 @default.
- W2127273504 hasConcept C99844830 @default.
- W2127273504 hasConceptScore W2127273504C11413529 @default.
- W2127273504 hasConceptScore W2127273504C118615104 @default.
- W2127273504 hasConceptScore W2127273504C122280245 @default.
- W2127273504 hasConceptScore W2127273504C12267149 @default.
- W2127273504 hasConceptScore W2127273504C126255220 @default.
- W2127273504 hasConceptScore W2127273504C138885662 @default.
- W2127273504 hasConceptScore W2127273504C154945302 @default.
- W2127273504 hasConceptScore W2127273504C177264268 @default.
- W2127273504 hasConceptScore W2127273504C179799912 @default.
- W2127273504 hasConceptScore W2127273504C199360897 @default.
- W2127273504 hasConceptScore W2127273504C2164484 @default.
- W2127273504 hasConceptScore W2127273504C2524010 @default.
- W2127273504 hasConceptScore W2127273504C27206212 @default.
- W2127273504 hasConceptScore W2127273504C2778738651 @default.
- W2127273504 hasConceptScore W2127273504C2778924833 @default.
- W2127273504 hasConceptScore W2127273504C33923547 @default.
- W2127273504 hasConceptScore W2127273504C41008148 @default.
- W2127273504 hasConceptScore W2127273504C58489278 @default.
- W2127273504 hasConceptScore W2127273504C74193536 @default.
- W2127273504 hasConceptScore W2127273504C76155785 @default.
- W2127273504 hasConceptScore W2127273504C81845259 @default.
- W2127273504 hasConceptScore W2127273504C99844830 @default.
- W2127273504 hasLocation W21272735041 @default.
- W2127273504 hasLocation W21272735042 @default.
- W2127273504 hasOpenAccess W2127273504 @default.
- W2127273504 hasPrimaryLocation W21272735041 @default.
- W2127273504 hasRelatedWork W1512098439 @default.
- W2127273504 hasRelatedWork W1943383135 @default.
- W2127273504 hasRelatedWork W1970088130 @default.
- W2127273504 hasRelatedWork W2029494882 @default.
- W2127273504 hasRelatedWork W2088032561 @default.
- W2127273504 hasRelatedWork W2096142412 @default.
- W2127273504 hasRelatedWork W2098777207 @default.