Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127284906> ?p ?o ?g. }
- W2127284906 endingPage "566" @default.
- W2127284906 startingPage "553" @default.
- W2127284906 abstract "Transcriptomic profiling experiments that aim to the identification of responsive genes in specific biological conditions are commonly set up under defined experimental designs that try to assess the effects of factors and their interactions on gene expression. Data from these controlled experiments, however, may also contain sources of unwanted noise that can distort the signal under study, affect the residuals of applied statistical models, and hamper data analysis. Commonly, normalization methods are applied to transcriptomics data to remove technical artifacts, but these are normally based on general assumptions of transcript distribution and greatly ignore both the characteristics of the experiment under consideration and the coordinative nature of gene expression. In this paper, we propose a novel methodology, ARSyN, for the preprocessing of microarray data that takes into account these 2 last aspects. By combining analysis of variance (ANOVA) modeling of gene expression values and multivariate analysis of estimated effects, the method identifies the nonstructured part of the signal associated to the experimental factors (the noise within the signal) and the structured variation of the ANOVA errors (the signal of the noise). By removing these noise fractions from the original data, we create a filtered data set that is rich in the information of interest and includes only the random noise required for inferential analysis. In this work, we focus on multifactorial time course microarray (MTCM) experiments with 2 factors: one quantitative such as time or dosage and the other qualitative, as tissue, strain, or treatment. However, the method can be used in other situations such as experiments with only one factor or more complex designs with more than 2 factors. The filtered data obtained after applying ARSyN can be further analyzed with the appropriate statistical technique to obtain the biological information required. To evaluate the performance of the filtering strategy, we have applied different statistical approaches for MTCM analysis to several real and simulated data sets, studying also the efficiency of these techniques. By comparing the results obtained with the original and ARSyN filtered data and also with other filtering techniques, we can conclude that the proposed method increases the statistical power to detect biological signals, especially in cases where there are high levels of structural noise. Software for ARSyN is freely available at http://www.ua.es/personal/mj.nueda." @default.
- W2127284906 created "2016-06-24" @default.
- W2127284906 creator A5002377126 @default.
- W2127284906 creator A5007029827 @default.
- W2127284906 creator A5038963177 @default.
- W2127284906 date "2011-11-14" @default.
- W2127284906 modified "2023-10-17" @default.
- W2127284906 title "ARSyN: a method for the identification and removal of systematic noise in multifactorial time course microarray experiments" @default.
- W2127284906 cites W1981572786 @default.
- W2127284906 cites W2021560851 @default.
- W2127284906 cites W2045775570 @default.
- W2127284906 cites W2049446938 @default.
- W2127284906 cites W2059240678 @default.
- W2127284906 cites W2063423779 @default.
- W2127284906 cites W2082676707 @default.
- W2127284906 cites W2096192437 @default.
- W2127284906 cites W2098562143 @default.
- W2127284906 cites W2100668965 @default.
- W2127284906 cites W2105559737 @default.
- W2127284906 cites W2107665951 @default.
- W2127284906 cites W2122915349 @default.
- W2127284906 cites W2128083889 @default.
- W2127284906 cites W2139345901 @default.
- W2127284906 cites W2140628921 @default.
- W2127284906 cites W2148541040 @default.
- W2127284906 cites W2149566602 @default.
- W2127284906 cites W2161938725 @default.
- W2127284906 cites W3104024536 @default.
- W2127284906 doi "https://doi.org/10.1093/biostatistics/kxr042" @default.
- W2127284906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22085896" @default.
- W2127284906 hasPublicationYear "2011" @default.
- W2127284906 type Work @default.
- W2127284906 sameAs 2127284906 @default.
- W2127284906 citedByCount "57" @default.
- W2127284906 countsByYear W21272849062013 @default.
- W2127284906 countsByYear W21272849062014 @default.
- W2127284906 countsByYear W21272849062015 @default.
- W2127284906 countsByYear W21272849062016 @default.
- W2127284906 countsByYear W21272849062017 @default.
- W2127284906 countsByYear W21272849062018 @default.
- W2127284906 countsByYear W21272849062019 @default.
- W2127284906 countsByYear W21272849062020 @default.
- W2127284906 countsByYear W21272849062021 @default.
- W2127284906 countsByYear W21272849062022 @default.
- W2127284906 countsByYear W21272849062023 @default.
- W2127284906 crossrefType "journal-article" @default.
- W2127284906 hasAuthorship W2127284906A5002377126 @default.
- W2127284906 hasAuthorship W2127284906A5007029827 @default.
- W2127284906 hasAuthorship W2127284906A5038963177 @default.
- W2127284906 hasBestOaLocation W21272849061 @default.
- W2127284906 hasConcept C104317684 @default.
- W2127284906 hasConcept C105795698 @default.
- W2127284906 hasConcept C115961682 @default.
- W2127284906 hasConcept C116834253 @default.
- W2127284906 hasConcept C124101348 @default.
- W2127284906 hasConcept C136886441 @default.
- W2127284906 hasConcept C144024400 @default.
- W2127284906 hasConcept C150194340 @default.
- W2127284906 hasConcept C154945302 @default.
- W2127284906 hasConcept C19165224 @default.
- W2127284906 hasConcept C33923547 @default.
- W2127284906 hasConcept C34736171 @default.
- W2127284906 hasConcept C41008148 @default.
- W2127284906 hasConcept C55493867 @default.
- W2127284906 hasConcept C58489278 @default.
- W2127284906 hasConcept C59822182 @default.
- W2127284906 hasConcept C8415881 @default.
- W2127284906 hasConcept C86803240 @default.
- W2127284906 hasConcept C99498987 @default.
- W2127284906 hasConceptScore W2127284906C104317684 @default.
- W2127284906 hasConceptScore W2127284906C105795698 @default.
- W2127284906 hasConceptScore W2127284906C115961682 @default.
- W2127284906 hasConceptScore W2127284906C116834253 @default.
- W2127284906 hasConceptScore W2127284906C124101348 @default.
- W2127284906 hasConceptScore W2127284906C136886441 @default.
- W2127284906 hasConceptScore W2127284906C144024400 @default.
- W2127284906 hasConceptScore W2127284906C150194340 @default.
- W2127284906 hasConceptScore W2127284906C154945302 @default.
- W2127284906 hasConceptScore W2127284906C19165224 @default.
- W2127284906 hasConceptScore W2127284906C33923547 @default.
- W2127284906 hasConceptScore W2127284906C34736171 @default.
- W2127284906 hasConceptScore W2127284906C41008148 @default.
- W2127284906 hasConceptScore W2127284906C55493867 @default.
- W2127284906 hasConceptScore W2127284906C58489278 @default.
- W2127284906 hasConceptScore W2127284906C59822182 @default.
- W2127284906 hasConceptScore W2127284906C8415881 @default.
- W2127284906 hasConceptScore W2127284906C86803240 @default.
- W2127284906 hasConceptScore W2127284906C99498987 @default.
- W2127284906 hasIssue "3" @default.
- W2127284906 hasLocation W21272849061 @default.
- W2127284906 hasLocation W21272849062 @default.
- W2127284906 hasOpenAccess W2127284906 @default.
- W2127284906 hasPrimaryLocation W21272849061 @default.
- W2127284906 hasRelatedWork W1700031991 @default.
- W2127284906 hasRelatedWork W2006956706 @default.
- W2127284906 hasRelatedWork W2106760772 @default.
- W2127284906 hasRelatedWork W2132723558 @default.
- W2127284906 hasRelatedWork W2379323287 @default.