Matches in SemOpenAlex for { <https://semopenalex.org/work/W2127452015> ?p ?o ?g. }
- W2127452015 endingPage "i343" @default.
- W2127452015 startingPage "i335" @default.
- W2127452015 abstract "State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains.Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs).The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz.Supplementary data are available at Bioinformatics online." @default.
- W2127452015 created "2016-06-24" @default.
- W2127452015 creator A5017672883 @default.
- W2127452015 creator A5040373478 @default.
- W2127452015 creator A5064539521 @default.
- W2127452015 date "2013-06-19" @default.
- W2127452015 modified "2023-10-18" @default.
- W2127452015 title "A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains" @default.
- W2127452015 cites W1859573897 @default.
- W2127452015 cites W1892578325 @default.
- W2127452015 cites W1903705897 @default.
- W2127452015 cites W1967448808 @default.
- W2127452015 cites W1975304761 @default.
- W2127452015 cites W1990516841 @default.
- W2127452015 cites W1995514580 @default.
- W2127452015 cites W1996423252 @default.
- W2127452015 cites W2028275047 @default.
- W2127452015 cites W2034699659 @default.
- W2127452015 cites W2056097559 @default.
- W2127452015 cites W2056189051 @default.
- W2127452015 cites W2057975573 @default.
- W2127452015 cites W2061636592 @default.
- W2127452015 cites W2067917889 @default.
- W2127452015 cites W2069212881 @default.
- W2127452015 cites W2082019380 @default.
- W2127452015 cites W2086959309 @default.
- W2127452015 cites W2093744073 @default.
- W2127452015 cites W2095340557 @default.
- W2127452015 cites W2095867585 @default.
- W2127452015 cites W2101231992 @default.
- W2127452015 cites W2102115661 @default.
- W2127452015 cites W2103017472 @default.
- W2127452015 cites W2105924489 @default.
- W2127452015 cites W2116022941 @default.
- W2127452015 cites W2116206606 @default.
- W2127452015 cites W2118978333 @default.
- W2127452015 cites W2122061192 @default.
- W2127452015 cites W2127375279 @default.
- W2127452015 cites W2130253098 @default.
- W2127452015 cites W2131510173 @default.
- W2127452015 cites W2132870739 @default.
- W2127452015 cites W2132926880 @default.
- W2127452015 cites W2133465414 @default.
- W2127452015 cites W2136671508 @default.
- W2127452015 cites W2136957665 @default.
- W2127452015 cites W2137104501 @default.
- W2127452015 cites W2147087392 @default.
- W2127452015 cites W2147202073 @default.
- W2127452015 cites W2159959024 @default.
- W2127452015 cites W2170858229 @default.
- W2127452015 cites W2913340405 @default.
- W2127452015 cites W86737493 @default.
- W2127452015 doi "https://doi.org/10.1093/bioinformatics/btt220" @default.
- W2127452015 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3694653" @default.
- W2127452015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23813002" @default.
- W2127452015 hasPublicationYear "2013" @default.
- W2127452015 type Work @default.
- W2127452015 sameAs 2127452015 @default.
- W2127452015 citedByCount "15" @default.
- W2127452015 countsByYear W21274520152014 @default.
- W2127452015 countsByYear W21274520152015 @default.
- W2127452015 countsByYear W21274520152016 @default.
- W2127452015 countsByYear W21274520152017 @default.
- W2127452015 countsByYear W21274520152018 @default.
- W2127452015 countsByYear W21274520152019 @default.
- W2127452015 countsByYear W21274520152021 @default.
- W2127452015 crossrefType "journal-article" @default.
- W2127452015 hasAuthorship W2127452015A5017672883 @default.
- W2127452015 hasAuthorship W2127452015A5040373478 @default.
- W2127452015 hasAuthorship W2127452015A5064539521 @default.
- W2127452015 hasBestOaLocation W21274520152 @default.
- W2127452015 hasConcept C11413529 @default.
- W2127452015 hasConcept C118615104 @default.
- W2127452015 hasConcept C124101348 @default.
- W2127452015 hasConcept C132525143 @default.
- W2127452015 hasConcept C134306372 @default.
- W2127452015 hasConcept C153180895 @default.
- W2127452015 hasConcept C154945302 @default.
- W2127452015 hasConcept C33923547 @default.
- W2127452015 hasConcept C36503486 @default.
- W2127452015 hasConcept C41008148 @default.
- W2127452015 hasConcept C74193536 @default.
- W2127452015 hasConcept C80444323 @default.
- W2127452015 hasConcept C81669768 @default.
- W2127452015 hasConceptScore W2127452015C11413529 @default.
- W2127452015 hasConceptScore W2127452015C118615104 @default.
- W2127452015 hasConceptScore W2127452015C124101348 @default.
- W2127452015 hasConceptScore W2127452015C132525143 @default.
- W2127452015 hasConceptScore W2127452015C134306372 @default.
- W2127452015 hasConceptScore W2127452015C153180895 @default.
- W2127452015 hasConceptScore W2127452015C154945302 @default.
- W2127452015 hasConceptScore W2127452015C33923547 @default.
- W2127452015 hasConceptScore W2127452015C36503486 @default.
- W2127452015 hasConceptScore W2127452015C41008148 @default.
- W2127452015 hasConceptScore W2127452015C74193536 @default.
- W2127452015 hasConceptScore W2127452015C80444323 @default.
- W2127452015 hasConceptScore W2127452015C81669768 @default.
- W2127452015 hasIssue "13" @default.